• Title/Summary/Keyword: 이용.관리 정보

Search Result 12,727, Processing Time 0.037 seconds

A Study on the One-Way Distance in the Longitudinal Section Using Probabilistic Theory (확률론적 이론을 이용한 종단면에서의 단방향 이동거리에 관한 연구)

  • Kim, Seong-Ryul;Moon, Ji-Hyun;Jeon, Hae-Sung;Sue, Jong-Chal;Choo, Yeon-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.87-96
    • /
    • 2020
  • To use a hydraulic structure effectively, the velocity of a river should be known in detail. In reality, velocity measurements are not conducted sufficiently because of their high cost. The formulae to yield the flux and velocity of the river are commonly called the Manning and Chezy formulae, which are empirical equations applied to uniform flow. This study is based on Chiu (1987)'s paper using entropy theory to solve the limits of the existing velocity formula and distribution and suggests the velocity and distance formula derived from information entropy. The data of a channel having records of a spot's velocity was used to verify the derived formula's utility and showed R2 values of distance and velocity of 0.9993 and 0.8051~0.9483, respectively. The travel distance and velocity of a moving spot following the streamflow were calculated using some flow information, which solves the difficulty in frequent flood measurements when it is needed. This can be used to make a longitudinal section of a river composed of a horizontal distance and elevation. Moreover, GIS makes it possible to obtain accurate information, such as the characteristics of a river. The connection with flow information and GIS model can be used as alarming and expecting flood systems.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.

The Study of Muscle Strength and Dietary Quality of the Korean Elderly: Based on the 2014-2018 Korea National Health and Nutrition Examination Survey (한국 노인의 근력과 식사의 질에 대한 연구: 2014-2018년 국민건강영양조사 자료를 이용하여)

  • Kim, Jin-A;Lee, Sim-Yeol
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.1
    • /
    • pp.113-129
    • /
    • 2022
  • This study evaluated the dietary habits and dietary quality of the Korean elderly according to muscle strength status. This study was conducted on the elderly aged over 65 years who participated in the 2014-2018 Korea National Health and Nutrition Examination Survey. Subjects were classified into the normal muscle strength group(n=2,000) and the low muscle strength group(n=1,273) according to the handgrip strength. There was a significant difference in general characteristics, diet habits, and health behavior according to the muscle strength status. The normal muscle strength group had a higher total score of KHEI and a subtotal score of 「adequacy」 items. But there was not significant difference in the 「moderation」 items. For the 「balance of energy intake」 items, the normal muscle strength group had a higher subtotal score than the low muscle strength group only in among women. The prevalence of low muscle strength decreased in the highest quartile of the adjusted KHEI total score(p for trend=0.08). As a result of this study, it was found that KHEI was significantly associated with muscle strength. This study result can be used to provide dietary guidelines for the improvement of muscle strength in the elderly based on each item of KHEI and sex.

Analysis of LDC Message Reception Performance of Korean eLoran Pilot Service according to Modulation Methods (첨단 지상파항법시스템(eLoran) 시범서비스의 LDC 메시지 변조기법에 따른 수신성능 분석)

  • Pyo-Woong, Son;Sak, Lee;Tae Hyun, Fang;Kiyeol, Seo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.525-529
    • /
    • 2022
  • In the eLoran system, the Loran Data Channel (LDC) is used to provide precise timing and positioning. The LDC message can be modulated with the Eurofix method, which modulates the transmission time of the 3rd-8th pulse not used for navigation, and the 9th pulse method, which modulates data using the 9th additional pulse after the existing 8 Loran pulses. In this paper, we analyzed the reception performance of the LDC message transmitted from the eLoran transmitter according to the modulation method. The eLoran testbed transmitter in Incheon was set to transmit LDC messages simultaneously with the 9th pulse modulation method and the Eurofix modulation method. Then, the LDC messages stored in the databases of the eLoran differential stations in Incheon and Pyeongtaek were analyzed in terms of the message reception rate according to the modulation method. Using the navigation aid management ship Inseong No. 1, the range of LDC message reception of actual sea users near Incheon Port was also analyzed. The results of this study are expected to be utilized in the full operational capability service after the eLoran pilot service.

Estimation of the Cost of Hypertension Disease Loss in 2010-2017 Using Cohort at Diagnosis Age and Treatment Time (진단나이 및 치료시점 코호트를 활용한 2010~2017년 고혈압 질환 손실비 추계)

  • Noh, Yun-Gon;Lee, Sang-Ho;Choi, Kyungsik;Song, Tae Min
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.782-793
    • /
    • 2022
  • The rise in chronic disease not only has a negative effect on people's lives, but it also increases the cost of medical care owing to the increased usage of medical care as health and medical technology improves, life expectancy rises, and rapid population ageing. In such context, this study examined the difference in the disease cost of hypertension according to demographic information and the effect of the initial diagnosis age and treatment period on the cost. This study used the Korean Health Panel Survey from 2010 to 2017, and selected subjects based on health insurance beneficiaries between the ages of 30 and under 80. With the selected data, the direct and indirect costs of disease loss were calculated according to the cost of illness approach, and we constructed a disease-loss ratio cohort considering the age of diagnosis and time of treatment for hypertension. From the results of the study, the annual cost of disease loss for hypertensive patients differed by gender by 110,107 won, and it was found that the cost increased by 1.8 times as the treatment time increased. In addition, when comparing disease loss ratios between the same age groups, it was found that the disease loss ratios between those in their 60s and 70s were affected by treatment time. This study confirmed that hypertension significantly affects the cost of the disease, and not only requires early diagnosis and management, but also preventive efforts to lower the incidence of hypertensive disease must be strengthened.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

A Study on Water-level Rise Behavior Curve using Historical Record (기왕자료를 이용한 수위상승거동곡선에 관한 연구)

  • Kwak, Jaewon;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.601-610
    • /
    • 2023
  • The comprehension of water-level behavior in rivers is essential for effective flood and river environmental management. The objective of this study is to propose a methodology that can be used by field engineers engaged in actual practice, to readily identify the characteristics of water-level behavior during flood events. To this end, a total of 45 historical water-level records from 2010 to 2022 year, which provide flood information for the flood vulnerable districts of the Han River, were obtained. A Water-level Rise Behavior Curve (WRBC) was developed and suggested to quantify the amount of water-level rise per unit time during flood. As a result, the water-level rises by more than 80% of the total rise within the first 6.2 hours, followed by a gradual rise. The time required to achieve a particular equilibrium varied depending on the area and runoff characteristics of the upstream. Furthermore, the study revealed that the WRBC provides a statistical representation of the water-level rise trend during floods, and can be effectively utilized for flood mitigation measures in waterfront spaces and irrigation facilities.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.