• Title/Summary/Keyword: 이용 요인

Search Result 15,540, Processing Time 0.053 seconds

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

The Survey on Actual Condition Depending on Type of Degraded area and Suggestion for Restoration Species Based on Vegetation Information in the Mt. Jirisan Section of Baekdudaegan (식생정보에 기초한 백두대간 지리산권역 내 훼손지 유형별 실태조사)

  • Lee, Hye-Jeong;Kim, Ju-Young;Nam, Kyeong-Bae;An, Ji-Hong
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.558-572
    • /
    • 2020
  • The purpose of this study was to classify the types of degraded areas of Mt. Jirisan section in Baekdudaegan and survey the actual condition of each damage type to use it as basic data for the direction of the restoration of damaged areas according to damage type based on the vegetation information of reference ecosystem. The analysis of the Mt. Jirisan section's actual degraded conditions showed that the total number of patches of degraded areas was 57, and the number of patches and size of degraded areas was higher at the low average altitude and gentle slope. Grasslands (deserted lands) and cultivated areas accounted for a high portion of the damage types, indicating that agricultural land use was a major damage factor. The survey on the conditions of 14 degraded areas showed that the types of damage were classified into the grassland, cultivated area, restoration area, logged-off land, and bare ground. The analysis of the degree of disturbance (the ratio of annual and biennial herb, urbanized index, and disturbance index) by each type showed that the simple single-layer vegetation structure mostly composed of the herbaceous and the degree of disturbance were high in the grassland and cultivated land. The double-layer vegetation structure appeared in the restoration area where the pine seedlings were planted, and the inflow of naturalized plants was especially high compared to other degraded areas due to disturbances caused by the restoration project and the nearby hiking trails. Although the inflow of naturalized plants was low because of high altitude in bare ground, the proportion of annual and biennial herb was high, indicating that all surveyed degraded areas were in early succession stages. The stand ordination by type of damage showed the restoration area on the I-axis, cultivated area, grassland, logged-off land, and bare ground in that order, indicating the arrangement by the damage type. Moreover, the stand ordination of the degraded areas and reference ecosystem based on floristic variation showed a clear difference in species composition. This study diagnosed the status of each damage type based on the reference ecosystem information according to the ecological restoration procedure and confirmed the difference in species composition between the diagnosis result and the reference ecosystem. These findings can be useful basic data for establishing the restoration goal and direction in the future.

Comparison of health care practice, dietary behavior, and nutrient intakes, considering the alcohol drinking status of industrial workers in the Chungnam area (충남지역 일부 산업체 근로자의 알코올섭취 수준에 따른 건강관리 실천, 식행동 및 영양소 섭취상태 비교)

  • Park, Gun Hee;Rho, Jeong Ok
    • Journal of Nutrition and Health
    • /
    • v.54 no.3
    • /
    • pp.277-291
    • /
    • 2021
  • Purpose: This study was undertaken to identify the alcohol drinking status of industrial workers, their health care practice, and dietary behavior, as well as their nutrient intake. Methods: In July 2019, 220 male subjects working in the Chungnam area were enrolled in the study. Their alcohol drinking status was evaluated by applying the Alcohol Use Disorder Identification-K (AUDIT-K) system. Demographic characteristics, status of health care practice, and dietary behaviors were assessed using a self-administered questionnaire; nutrient intakes were analyzed using 24-hour recalls. Data were analyzed by applying χ2-test, ANOVA, Duncan test, and Pearson's correlation analysis with SPSS v. 25.0. Results: Workers were classified by their alcohol drinking status as 'normal' (84, 38.2%), 'problem drinker' (45, 20.5%), 'alcohol dependence I' (60, 27.3%), and 'alcohol dependence II' (31, 16.0%). The alcohol drinking status showed significant differences with age (p < 0.05), monthly income (p < 0.05), smoking status (p < 0.05), and need for weight control (p < 0.05). Moreover, increased alcohol intake resulted in significantly decreased levels of health care practice and dietary behaviors (p < 0.05, p < 0.01, respectively). The energy intake was highest in the 'alcohol dependence I' group, followed by 'alcohol dependence II', 'problem drinker', and 'normal drinker' (p < 0.05). Intakes of vitamin E, vitamin C, and niacin in the 'alcohol dependence I' group were found to be higher than the other groups (p < 0.05). A negative correlation was obtained between alcohol drinking status, health care practice, and dietary behaviors, whereas a positive correlation was determined between alcohol drinking status, energy and water intakes. Conclusion: Considering these results, we conclude the necessity to consider nutritional and alcoholic education programs for improving the quality of work life of industrial workers, based on their alcohol drinking status.

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements (적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model (리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화)

  • Youn, Daeok;Song, Hyunggyu;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.60-76
    • /
    • 2022
  • This study presents a software full setup and the following test execution times in a Linux cluster for the United Kingdom Earth System Model (UKESM) and then compares the model results from control and experimental simulations of the UKESM relative to various observations. Despite its low resolution, the latest version of the UKESM can simulate tropospheric chemistry-aerosol processes and the stratospheric ozone chemistry using the United Kingdom Chemistry and Aerosol (UKCA) module. The UKESM with UKCA (UKESM-UKCA) can treat atmospheric chemistryaerosol-cloud-radiation interactions throughout the whole atmosphere. In addition to the control UKESM run with the default CMIP5 SO2 emission dataset, an experimental run was conducted to evaluate the aerosol effects on meteorology by changing atmospheric SO2 loading with the newest REAS data over East Asia. The simulation period of the two model runs was 28 years, from January 1, 1982 to December 31, 2009. Spatial distributions of monthly mean aerosol optical depth, 2-m temperature, and precipitation intensity from model simulations and observations over East Asia were compared. The spatial patterns of surface temperature and precipitation from the two model simulations were generally in reasonable agreement with the observations. The simulated ozone concentration and total column ozone also agreed reasonably with the ERA5 reanalyzed one. Comparisons of spatial patterns and linear trends led to the conclusion that the model simulation with the newest SO2 emission dataset over East Asia showed better temporal changes in temperature and precipitation over the western Pacific and inland China. Our results are in line with previous finding that SO2 emissions over East Asia are an important factor for the atmospheric environment and climate change. This study confirms that the UKESM can be installed and operated in a Linux cluster-computing environment. Thus, researchers in various fields would have better access to the UKESM, which can handle the carbon cycle and atmospheric environment on Earth with interactions between the atmosphere, ocean, sea ice, and land.

The Design Improvement Plan of Seoul Forest Visitor Centers for Little Children (서울시 유아숲체험장의 공간 개선 방안)

  • Kim, Minjung;Jeong, Wookju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.49-63
    • /
    • 2021
  • The Forest Visitor Centers for Little Children who means preschoolers is an educational facility that achieves holistic growth by experiencing forests, and it should not be completed by installing specific facilities in the forest environment, but should be a space where preschoolers can play freely in the forest environment themselves. This study comprehensively evaluated the current status of Seoul Forest Visitor Centers for Little Children and suggested space improvement measures to enhance the effectiveness of forest experience. Through the theoretical review, seven spatial elements that enhance the effect of forest experience and six areas composing outdoor play areas were derived to prepare an analysis table for current status evaluation, and field survey studies were conducted on 24 centers in Seoul. Through expert interviews, the physical status was examined from the perspective of childhood education and the experiences of the users were summarized. As a result of the study, the Seoul Forest Visitor Center for Little Children is classified into six types according to the location characteristics and spatial structure, and has the characteristics of each type. The effectiveness of forest experience can be enhanced by identifying and revealing the environmental strengths of individual centers. In the case of outdoor experience learning zones, the proportion of exercise play areas was very large. By evenly organizing the forest experience space for each area, it will be possible to provide more diverse experiences to preschoolers. However, the status of uniform facility-oriented cannot be viewed as a fragmentary factor that lowers the effect of forest experience. The key to increasing the effect of forest experience by inducing creative activities is the spatial composition that considers the surrounding natural environment. Facilities should be a medium to help preschoolers' interest move into the forest. This study prepared data to understand the average physical status of the Seoul Forest Visitor Center for Little Children and suggested space improvement measures to increase the effectiveness of forest experience. This can be used as basic data for research to improve the quality level of the Seoul Forest Visitor Center for Little Children about 10 years after the project was implemented.

Musculoskeletal Injuries by Weapons in Korean Soldiers: Four-Year Follow-Up (총기 및 폭발물에 의한 군인의 근골격계 손상: 최근 4년간 분석)

  • Yang, Hanbual;Hwang, Il-Ung;Song, Daeguen;Moon, Gi Ho;Lee, Na Rae;Kim, Kyoung-Nam
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.234-244
    • /
    • 2021
  • Purpose: To date, studies of firearm and explosive injuries in the Korean military have been limited compared to its importance. To overcome this, this study examined the characteristics of musculoskeletal damages in soldiers who have suffered firearm and explosive injuries over the past four years. Materials and Methods: From January 2015 to July 2019, military forces who had suffered musculoskeletal injuries from firearms or explosive substances were included. The medical records and radiographs were reviewed retrospectively, and telephone surveys about Short Musculoskeletal Functional Assessment (SMFA) for this group were conducted. To compare the functional outcomes, statistical analysis was performed using a t-test for the types of weapons, and ANOVA for others. Results: Of the 61 patients treated for firearms and explosives injuries, 30 patients (49.2%) were included after undergoing orthopedic treatment due to musculoskeletal injury. The average age at injury was 26.4 years old (21-52 years old). The number of officers and soldiers was similar. Eleven were injured by gunshot and 19 by an explosive device. Sixteen were treated in the Armed Forces Capital Hospital and 10 at private hospitals. More than half of the 16 patients (53.3%) with a fracture had multiple fractures. The most common injury site was the hand (33.3%), followed by the lower leg (30.0%). There were 14 patients (46.7%) with Gustilo-Anderson classification 3B or higher who required a soft tissue reconstruction. Fifteen patients agreed to join the SMFA survey for the functional outcomes. Between officers and soldiers, officers had better scores in the Bother Index compared to soldiers (p=0.0045). Patients treated in the Armed Forces Capital Hospital had better scores in both the Dysfunction and Bother Index compared to private hospitals (p=0.0008, p=0.0149). Conclusion: This is the first study to analyze of weapons injuries in the Korean military. As a result of the study, the orthopedic burden was high in the treating patients with military weapon injuries. In addition, it is necessary to build a military trauma registry, including firearm and explosive injuries, for trauma treatment evaluation and development of military trauma system.