• Title/Summary/Keyword: 이온 전도성 금속 복합체

Search Result 8, Processing Time 0.022 seconds

침투법(infiltration)을 이용한 고체 산화물 연료전지용 복합체 전극 제조 및 평가

  • Park, Jong-Seong;Vohs, J.M.;Gorte, R.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.57.2-57.2
    • /
    • 2012
  • 산소 이온 전도성 세라믹을 이용한 고체 산화물 연료전지의 전극은 원활한 전기화학반응을 위해, 이온 전도도, 전자 전도도 및 전기화학적 활성을 동시에 가지고 있어야 한다. 이를 위해 복합체 전극을 사용하며, 특히 음극의 경우 니켈(Nickel)과 Yttria-stabilized zirconia (YSZ)로 이루어진 복합체 전극을 혼합 및 소결을 통해 제조하여 사용하였다. 하지만, 니켈의 경우 탄화 수소 연료에서의 탄소 침적 문제와 열악한 산화환원 안정성(redox stability)등의 문제점을 가지고 있다. 따라서 니켈대신 전도성 세라믹을 사용한 세라믹 복합체 음극 개발이 활발히 이루어지고 있으며, 그 중 침투법(infiltration method)을 이용한 복합체 전극 제조 방법을 소개한다. 실제로 니켈 금속과 유사한 높은 전기 전도도를 갖는 Sr-doped Lanthanum Vanadate (LSV)을 이용해, YSZ-LSV 복합체 전극을 침투법을 이용해 제조하고, 소량의 촉매을 첨가하여, 이온전도도, 전자 전도도 및 촉매 활성을 갖는 복합체 음극을 제조하였다. 이 복합체 음극의 탄화수소에서의 연료전지 성능 및 redox stability을 측정하였다.

  • PDF

High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs (나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조)

  • Jung, Yo-Han;Lee, Jang-Woo;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

Model Based Investigation of Surface Area Effect on the Voltage Generation Characteristics of Ionic Polymer Metal Composite Film (모델 기반의 이온 전도성 고분자 필름 금속 복합체의 표면적 증가에 따른 전압생성 특성 변화에 관한 연구)

  • Park, Kiwon;Kim, Dong Hyun
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.401-407
    • /
    • 2016
  • IPMC is composed of thin ion conductive polymer film sandwiched between metallic electrodes plated on both surfaces. Ionic Polymer-Metal Composite (IPMC) generates voltages when bent by mechanical stimuli. IPMC has a potential for the variety of energy harvesting applications due to its soft and hydrophilic characteristics. However, the large-scale implementation is necessary to increase the output power. In this paper, the scale-up of surface area effect on voltage generation characteristics of IPMC was investigated using IPMC samples with different surface areas. Also, a circuit model simulating both the output voltage and its offset variations was designed for estimating the voltages from IPMC samples. The proposed model simulated the output voltages with offsets well corresponding to various frequencies of input bending motion. However, some samples showed that the increase of error between real and simulated voltages with time due to the nonlinear characteristic of offset variations.

Zr based metallic glass thin films for corrosion protection of the metallic bipolar plate in PEM fuel cell (금속계 연료전지 분리판의 내식특성 향상을 위한 Zr기 비정질 박막 합성기술)

  • Seon, Ju-Hyeon;Mun, Gyeong-Il;Sin, Seung-Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • 연료전지 스택을 구성하는 핵심 부품 중 하나인 분리판(Bipolar plate)은 반응 연료인 수소와 산소를 분리하여 셀(cell)의 전면적에 균일하게 분배, 공급, 배기 및 전기화학반응에 의해 생성된 전류를 수집하며, 높은 가스밀폐성, 전기전도성 및 내식성이 요구된다. 분리판 소재로는 흑연, 고분자-탄소 복합체 및 금속 등이 사용되고 있으며, 이중 연료전지 스택의 부피, 무게 및 제조비용 감소를 위하여 금속분리판이 주목받고 있다. 그러나 금속분리판의 경우 연료전지 작동환경에서 부식반응에 의한 이온 용출로 인해 전극촉매나 고분자전해질막의 오염을 유발할 수 있다는 단점이 있어 최근 금속계 분리판의 코팅을 통하여 분리판의 내식특성 및 전기적 특성을 향상시키는 연구가 활발히 진행되고 있다.

  • PDF

Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs) (표면전극 형성 방법과 이온-교환막 두께가 이온성 고분자-금속 복합체(IPMC) 구동에 미치는 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.471-477
    • /
    • 2006
  • Ion exchange metal composite(IPMC) has toughness equivalent to the range of human's muscle, transformation-actuation force by relatively low voltage and the fast response time. Thus, as a new method for preparing thicker IPMC, the solution casting method to make the films of various thicknesses out of liquid nation was attempted in this study. To reduce the surface resistance of electrode, the first plated electrode prepared by Oguro method was replated with Au and Ir using ion beam assisted deposition(IBAD). The microstructures of electrode surfaces before and after IBAD plating were investigated using SEM. The change of water and ion-conductivity in IPMC were measured under applied voltage. The displacement and driving force of IPMCs with various thicknesses were measured to evaluate the driving properties.

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).