• Title/Summary/Keyword: 이슈 키워드

Search Result 194, Processing Time 0.018 seconds

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

A study on the Relationship between the Degree of Awareness on Low Carbon Green Growth and the Organizational Commitment Focused on the Traditional Retailers (전통시장 상인들의 저탄소 녹색성장에 대한 인식과 조직몰입의 관계에 대한 연구)

  • Yang, Hoe-Chang;Kim, Sung-Il;Park, Young-Ho;Lee, Shang-Nam
    • Journal of Distribution Science
    • /
    • v.9 no.3
    • /
    • pp.37-46
    • /
    • 2011
  • Since the Korean retail industry was made accessible to the big conglomerates and foreign retail companies, local traditional markets have faced serious problems. To sustain the local traditional markets' survival, the Korean government established various remedial policies for addressing, and many scholars published articles to suggest how to find solutions to, the problem. Unfortunately, the results have not been satisfactory. The purpose of this study is to find another way to help the Korean traditional retail market, from the view point of the Green Growth Policy, an initiative designed to address environmentally balanced economic growth in Korea. In order to survive and to maintain sustainable growth, it is incumbent upon retailers in the traditional market to understand the concept of the Green Growth Policy. A survey was conducted as a means of testing the degree of awareness of the Green Growth Policy, as well as determining the relationship between the degree of awareness and the degree of organizational commitment by the retailers in the local traditional markets. Interestingly, we were able to detect some of the features (e.g., they were distinguished by the elderly and the young, as well as low level of education and high level of education) in the traditional market retailers' demographic characteristics. We utilized the analysis of variance (ANOVA) statistical method to simultaneously compare the differences in retailers' demographic characteristics; the results were as follows: Overall, the results showed that the awareness of the Green Growth Policy, the degree of trust in the government's policy, levels of self-efficacy, and levels of organizational commitment were higher with the older traditional market retailers than the younger traditional market retailers. Specifically, the degree of trust in government policies (F=9.964,p < .05), levels of self-efficacy (F=5.532,p < .05), and levels of organizational commitment (F=5.697,p < .05) were statistically significant. Moreover, in the portion of the study that addressed the difference between education levels, all the variables were averaged in the higher education category of the traditional market retailers. Specifically, awareness levels of the Green Growth Policy (F=8.564,p < .005) and levels of self-efficacy (F=6.754,p < .005) were statistically significant. These results revealed that the traditional market retailers' demographic characteristics should be considered important factors in order to realize their policy. The results of the study showed the following: 1) The degree of awareness of the government's Green Growth Policy was statistically significant as it related to traditional market retailers' organizational commitment. 2) The degree of trust of the government's policy was significantly moderated between the awareness of the government's Green Growth Policy and the traditional market retailers' organizational commitment. This result demonstrates that the traditional market retailers' awareness of the government's Green Growth Policy will show more organizational commitment with higher levels of trust of the government's policy. 3) It also revealed that traditional market retailers' self-efficacy was fully mediated between the awareness of the Green Growth Policy of the government and traditional market retailers' organizational commitment. The results suggest that the government should show an interest in showing traditional market retailers how to enhance their traditional markets. Implications and future research directions are also discussed.

  • PDF