• Title/Summary/Keyword: 이상 예측

Search Result 5,296, Processing Time 0.029 seconds

수직 관다발형 비등관에서의 이상 유동 불안정성 특성 해석

  • 황대현;유연종;김긍구;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.463-468
    • /
    • 1998
  • 수직 관다발형 비등관에서의 밀도파 진동 및 유동 폭주형 이상유동 불안정성을 해석하기 위하여 선형화 기법 및 D-partition 방법론에 근거한 해석 코드(ALFS)를 개발하고 기존 실험자료 분석을 통해 코드의 예측 성능을 평가하였다. 그 결과 이상유동이 평형상태에 있는 것으로 가정하는 가장 단순한 모델인 HEM은 전반적으로 유동 불안정성 발생 시점의 열출력을 실험치보다 약 20% 정도 낮게 예측하였으며, 이상 유동의 속도 및 온도의 비평형 상태를 고려하는DEM과 DNEM에 의한 예측 결과는 7∼15%의 평균 오차 범위에서 실험 자료를 예측하는 것으로 나타났다.

  • PDF

The effect of patchy outliers in time series forecasting (시계열에서의 연속이상치가 예측에 미치는 영향)

  • 이재준;편영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.1
    • /
    • pp.125-137
    • /
    • 1996
  • Time series data are often contaminated with outliers due to influence of unusal and non-responsitive events. The effect of the outliers is larger in the time series analysis than in the other statistical analysis, because the time series data have dependent structure over time. This paper focuses on the effect of patchy outliers on forecasting. Especially, the increase of the mean square of the l-step-ahead forecast error is derived and used to evaluate the impact of those outliers on the forecast. We fine, in general, that this increase is rather small, provided that the patchy outliers does not occur too close to the forecast origin.

  • PDF

Abnormal behavior prediction system based on companion animal behavior analysis (반려동물 행동 분석 기반 이상행동 예측 시스템)

  • Shin, Minchan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.487-490
    • /
    • 2021
  • 최근 반려동물 관련 산업이 증가함에 따라 반려동물의 행동을 분석하는 연구가 진행되고 있다. 이를 바탕으로 본 논문에서는 반려동물 행동 분석을 통한 이상행동 예측 시스템을 제안한다. 이 시스템은 CCTV로부터 반려동물의 영상 데이터를 수집하고, YOLOv4(You Only Look Once version 4)를 통해 반려동물의 객체를 탐지한다. 행동을 분석하기 위해 탐지된 반려동물 객체를 DeepLabCut 딥러닝 알고리즘을 사용하여 관절 좌표 정보를 추출한다. 추출된 관절 좌표와 반려동물의 일반적인 행동을 매칭하여 이상행동을 예측하기 위한 DNN(Deep Neural Networks)의 입력 데이터로써 사용된다. 위 과정을 통해 반려동물의 전체적인 행동을 분석하여 이상행동을 예측한다. 이 시스템을 통해 반려동물의 행동을 분석하고 이상행동을 예측함으로써 반려동물 의료 관련 사업에도 적용될 수 있을 것이다.

Improving the prediction accuracy for LDL-cholesterol based on semi-supervised learning (준지도학습 기반 LDL-콜레스테롤 예측의 정확도 개선)

  • Yang, Su-Bhin;Kim, Min-Tae;Kwon, Su-Bin;Woo, Na-Hyun;Kim, Hak-Jae;Jeong, Tai-Kyeong;Lee, Sung-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.553-556
    • /
    • 2022
  • 이상지질혈증의 발병에 대한 조기 진단 및 관리하는 것은 중요한 문제이다. 이상지질혈증의 진단은 혈액계측 정보 중에서 네 가지 LDL, HDL, TG, 그리고 TC를 이용하여 진단하며, 이상지질혈증 관리를 위해서는 LDL을 추정하는 것이 중요하다. 본 논문에서는 나이, 성별, 그리고 BMI와 같은 신체계측 정보를 학습하여 LDL-콜레스테롤을 예측하기 위한 준지도학습(Semi-supervised learning) 기반 기계학습 방법을 제안한다. 제안 방법은 얕은 학습(Shallow Learning)기반의 MLP(Multi-Layer Perceptron)을 이용하고, 이상지질혈증 진단인자간의 상관관계를 고려하여 신체계측 정보로 예측된 HDL, TG, 그리고 TC을 이용하여 일반적인 기계학습을 이용한 예측방법의 정확도를 개선한다. 즉, 제안방법은 신체계측 정보를 이용하여 혈액계측 정보의 LDL, HDL, TG, 그리고 TC을 각각 예측하고, 신체계측에 혈액계측의 예측 정보를 추가하여 학습한 준지도학습 기반 얕은 네트워크를 설계한다. 실험결과, HDL, TG, 그리고 TC의 혈액예측 정보를 이용한 준지도학습 기반 LDL 예측 정확도는 71.4%로 신체계측 정보만을 이용한 예측 방법의 67.0% 보다 약 4.4% 개선할 수 있음을 확인한다.

Performance Evaluation of Battery Remaining Time Estimation Methods According to Outlier Data Processing Policies in Mobile Devices (모바일 기기에서 이상치 데이터 처리 정책에 따른 배터리 잔여 시간 예측 기법의 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1078-1090
    • /
    • 2022
  • The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.

항로표지 고장예측 서비스를 위한 기계학습 모델 연구

  • 김환;정수환;임성수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.95-97
    • /
    • 2022
  • 다양한 소스에서 수집되고 연동되는 항로표지 상태 데이터에서의 이상탐지는 항로표지의 고장예측에 있어서 중요한 역할을 한다. 이 연구에서는 항로표지 고장예측 서비스를 위해 상태 데이터를 모델링하고 분석할 수 있는 기계학습 모델의 연구 방법을 소개한다.

  • PDF

Influence of Patchy Outliers on the Forecast of Winters Seasonal Model (가법계절지수모형에서 예측에 미치는 이상치의 영향)

  • 편영숙;이재준
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.491-503
    • /
    • 1999
  • 시계열자료에는 흔히 대부분의 자료에서 벗어나는 이상치들이 포함되어 있는데, 이러한 자료는 관측치들 사이의 종속구조로 인해 분석과정에 영향을 끼칠 수 있고, 특히 연속시점에서 발생하는 경우에 그 영향이 매우 심각할 수 있다. 본 논문에서는 연속이상치(PO)가 Winters 계절지수모형의 분석과정에 미치는 영향을 유도하고, 예측 평균제곱오차(MSFE)를 구하여 연속이상치가 예측에 미치는 영향을 제시하였다. 또한, 실제자료를 이용하여 연속이상치의 영향을 실증적으로 분석하였다.

  • PDF

Analyzing Influence of Outlier Elimination on Accuracy of Software Effort Estimation (소프트웨어 공수 예측의 정확성에 대한 이상치 제거의 영향 분석)

  • Seo, Yeong-Seok;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.589-599
    • /
    • 2008
  • Accurate software effort estimation has always been a challenge for the software industrial and academic software engineering communities. Many studies have focused on effort estimation methods to improve the estimation accuracy of software effort. Although data quality is one of important factors for accurate effort estimation, most of the work has not considered it. In this paper, we investigate the influence of outlier elimination on the accuracy of software effort estimation through empirical studies applying two outlier elimination methods(Least trimmed square regression and K-means clustering) and three effort estimation methods(Least squares regression, Neural network and Bayesian network) associatively. The empirical studies are performed using two industry data sets(the ISBSG Release 9 and the Bank data set which consists of the project data collected from a bank in Korea) with or without outlier elimination.

Analysis of detected anomalies in VOC reduction facilities using deep learning

  • Min-Ji Son;Myung Ho Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.13-20
    • /
    • 2023
  • In this paper, the actual data of VOC reduction facilities was analyzed through a model that detects and predicts data anomalies. Using the USAD model, which shows stable performance in the field of anomaly detection, anomalies in real-time data are detected and sensors that cause anomalies are searched. In addition, we propose a method of predicting and warning, when abnormalities that time will occur by predicting future outliers with an auto-regressive model. The experiment was conducted with the actual data of the VOC reduction facility, and the anomaly detection test results showed high detection rates with precision, recall, and F1-score of 98.54%, 89.08%, and 93.57%, respectively. As a result, averaging of the precision, recall, and F1-score for 8 sensors of detection rates were 99.64%, 99.37%, and 99.63%. In addition, the Hamming loss obtained to confirm the validity of the detection experiment for each sensor was 0.0058, showing stable performance. And the abnormal prediction test result showed stable performance with an average absolute error of 0.0902.

Anomaly Detection of IGS Predicted Orbits for Near-Real-Time Positioning Using GPS (GPS기반 준실시간 위치추적을 위한 IGS 예측궤도력 이상 검출)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.953-961
    • /
    • 2011
  • IGS (International GNSS Service) predicted orbits contained in IGS ultra-rapid orbits is suitable for real-time or near-real-time precise positioning. In this paper, we analyzed orbit anomalies of the IGS predicted orbits and detected the anomalies NANU (Current Notice Advisories to NAVSTAR Users) messages and IGS BRDC (Broadcast Ephemerides). As a results, the orbit anomalies of the predicted orbits were observed 93 times in 2010. In case of using the NANUs, we could get detection performance of 88% about the IGS predicted orbits's anomalies. And we could achieve 95% detection performance when the NANUs and BRDCs were used together.