• Title/Summary/Keyword: 이상 수질

Search Result 1,235, Processing Time 0.033 seconds

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF

An Application-Specific and Adaptive Power Management Technique for Portable Systems (휴대장치를 위한 응용프로그램 특성에 따른 적응형 전력관리 기법)

  • Egger, Bernhard;Lee, Jae-Jin;Shin, Heon-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.367-376
    • /
    • 2007
  • In this paper, we introduce an application-specific and adaptive power management technique for portable systems that support dynamic voltage scaling (DVS). We exploit both the idle time of multitasking systems running soft real-time tasks as well as memory- or CPU-bound code regions. Detailed power and execution time profiles guide an adaptive power manager (APM) that is linked to the operating system. A post-pass optimizer marks candidate regions for DVS by inserting calls to the APM. At runtime, the APM monitors the CPU's performance counters to dynamically determine the affinity of the each marked region. for each region, the APM computes the optimal voltage and frequency setting in terms of energy consumption and switches the CPU to that setting during the execution of the region. Idle time is exploited by monitoring system idle time and switching to the energy-wise most economical setting without prolonging execution. We show that our method is most effective for periodic workloads such as video or audio decoding. We have implemented our method in a multitasking operating system (Microsoft Windows CE) running on an Intel XScale-processor. We achieved up to 9% of total system power savings over the standard power management policy that puts the CPU in a low Power mode during idle periods.

Effect of ATP on Calcium Channel Modulation in Rat Adrenal Chromaffin Cells (흰쥐 부신 크로마핀 세포 칼슘통로 조절에 미치는 ATP의 효과)

  • Kim, Kyung Ah;Goo, Yong Sook
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.157-166
    • /
    • 2014
  • ATP in quantity co-stored with neurotransmitters in the secretory vesicles of neurons, by being co-released with the neurotransmitters, takes an important role to modulate the stimulus-secretion response of neurotransmitters. Here, in this study, the modulatory effect of ATP was studied in $Ca^{2+}$ channels of cultured rat adrenal chromaffin cells to investigate the physiological role of ATP in neurons. The $Ca^{2+}$ channel current was recorded in a whole-cell patch clamp configuration, which was modulated by ATP. In 10 mM $Ba^{2+}$ bath solution, ATP treatment (0.1 mM) decreased the $Ba^{2+}$ current by an average of $36{\pm}6%$ (n=8), showing a dose-dependency within the range of $10^{-4}{\sim}10^{-1}mM$. The current was recovered by ATP washout, demonstrating its reversible pattern. This current blockade effect of ATP was disinhibited by a large prepulse up to +80 mV, since the $Ba^{2+}$ current increment was larger when treated with ATP ($37{\pm}5%$, n=11) compared to the control ($25{\pm}3%$, n=12, without ATP). The $Ba^{2+}$ current was recorded with $GTP{\gamma}S$, the non-hydrolyzable GTP analogue, to determine if the blocking effect of ATP was mediated by G-protein. The $Ba^{2+}$ current decreased down to 45% of control with $GTP{\gamma}S$. With a large prepulse (+80 mV), the current increment was $34{\pm}4%$ (n=19), which $25{\pm}3%$ (n=12) under control condition (without $GTP{\gamma}S$). The $Ba^{2+}$ current waveform was well fitted to a single-exponential curve for the control, while a double-exponential curve best fitted the current signal with ATP or $GTP{\gamma}S$. In other words, a slow activation component appeared with ATP or $GTP{\gamma}S$, which suggested that both ATP and $GTP{\gamma}S$ caused slower activation of $Ca^{2+}$ channels via the same mechanism. The results suggest that ATP may block the $Ca^{2+}$ channels by G-protein and this $Ca^{2+}$ channel blocking effect of ATP is important in autocrine (or paracrine) inhibition of adrenaline secretion in chromaffin cell.

The Comparative Studies on the Urban and Rural Landscape for the Plant Diversity Improvement in Pond Wetland (농촌과 도시지역 비교를 통한 연못형습지의 식생다양성 증진방안 연구)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Nam, Hong-Shik;Kim, Nam-Choon
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.62-74
    • /
    • 2015
  • Urban areas are variously under threat including deterioration of ecological functions. Many pond wetland types have been created as part of an effort to improve and restore this urban environment. This study was arranged to examine improvement plans of wetlands in urban areas by analyzing semi-natural wetlands in farm areas. As for environment for water quality, it suggested the inflow of natural water neighboring rivers or the direct inflow of rain as the improvement plans. The result which analyzed soil pH, OM, and T-N content of the soil environment mentioned that urban areas supplied artificial sluices, removed apoptotic bodies, and used artificial soil and waterproofing materials and use of natural materials in design and construction, the sluice state of the natural form, and negligence of autumn plants were suggested as the improvement plans. Florae appeared in the subject sites of the study have found that there are 35 families 69 species in urban areas and 53 families 142 species in rural areas. As the average has found that there are 18.5 families 29.3 species in 4 urban areas and 26.3 families 53.5 species in 4 rural areas, the big difference between them was analyzed. As the cause has found that there are differences in yearly plants in farming areas when compared to urban areas, creation of various basic environments including soil and water quality was suggested to make yearly plants settle down widely. Naturalized plants have found that there are no big differences between urban areas and rural areas. However, the average of the naturalized ratio in urban areas is 17.4% as the naturalized plants are about 1/4 of the appeared plants. As it was analyzed to be higher than 7.7%, the average of the naturalized ratio in farming areas as the big difference, creation of various inhabiting environments was suggested to make more yearly plants appear like the analyzed result of the life type. Consideration of placement, materials, and inhabiting environments was suggested to make creation of wetlands well appreciated to improve functions of wetlands in urban areas. It is expected that the above results of the study will be utilized in creation and improvement of the pond wetlands which can play a huge role in increase and improvement of biological diversity in urban areas.

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF

Optimum Management Plan of Swine Wastewater Treatment Plant for the Removal of High-concentration Nitrogen (고농도 질소제거를 위한 축산폐수 처리시설 적정관리 방안)

  • Shin, Nam-Cheol;Jung, Yoo-Jin;Sung, Nak-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • The amount of swine wastewater reaches about $197,000m^3$ per day at live-stock houses in the whole country. A half of the swine wastewater resources are too small to be restricted legally. This untreated wastewater causes the eutrophication in the water bodies. In case of swine wastewater treatment, the solid-liquid separation must be performed because feces(solid phase) and urine(liquid phase) have large differences in nitrogen and phosphorus concentration. It is necessary to assess exactly the concentration of the pollutants in swine wastewater for planning the wastewater treatment facilities. A full-scale operation was carried out in K city and the plant is consists of conventional plant, the supplementary flocculation basin of chemical treatment process and $anaerobic{\cdot}aerobic$ basin for nitrogen removal. The improved full-scale swine wastewater treatment plant removed the $1,500{\sim}3,000mg/l$ of total-nitrogen(T-N) to 120mg/l of T-N and $131{\sim}156mg/l$ of total-phosphorus(T-P) to $0.15{\sim}1.00mg/l$ of T-N. Accordingly, as a results of operational improvement, the removal efficiencies of T-N and T-P were over $92{\sim}96%$, 99%, respectively. The continuous supply of organic carbon sources and the state of pH played important roles for the harmonious metabolism in anaerobic basin and the pH value of anaerobic basin maintained at about 9.0 for the period of the study.

  • PDF

Chemical Characteristics of Soil and Groundwater in Plastic Film House Fields under Fertigation System (시설하우스 관비재배 토양과 지하수의 화학성)

  • Lee, Young-Han;Lee, Seong-Tae;Lee, Sang-Dae;Kim, Yeong-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.326-333
    • /
    • 2005
  • To enhance groundwater quality and soil nutrient management in fertigated plastic film house, groundwater samples from Jinju 52, Sacheon 3, Changnyeong 3, Sancheong 4 and Namhae 2 sites and soil samples from Jinju 23 sites were collected from September to November in 2004. The average concentration of $NO_3-N$ in groundwater was $12.0mg{\ell}^{-1}$ and 20% of survey sites exceeded the limiting level $(20mg{\ell}^{-1})$ of agricultural goundwater quality. The amount of ions in groundwater was in the order of $Ca^{2+}>Na^+>Mg^{2+}>NH_4-N>K^+$ in cations and ${HCO_3}^->{SO_4}^{2-}>NO_3-N>Cl^-$ in anions. Electrical conductivity of groundwater was positively correlated with $Ca^{2+},\;Cl^-,\;Mg^{2+},\;{SO_4}^{2-},\;NO_3-N\;and\;Na^+$ concentrations. In addition, it had significantly positive correlation with sum cations and anions, respectively $({\Sigma}cations\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}4.65,\;{\Sigma}anions\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}7.63\;and\;{\Sigma}\;(cations+anions,\;me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}11.1)$. The proportions of soil chemical properties over the critical levels for crop production in fertigated plastic film house were 56.5% in pH, 47.8% in OM, 95.7% in available $P_2O_5$, 78.3% in exchangeable K, 87% in exchangeable Ca, 56.5% in exchangeable Mg and 43.5% in EC. Soil pH was positively correlated with pH $(r=0.540^{**})$ and ${HCO_3}^-$ concentration $(r=0.523^{**})$ of groundwater.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

On the Spatio-temporal Distributions of Nutrients and Chlorophyll a Concentration, and the Environmental Factors on the Variation of Phytoplankton Biomass in the Shiahae, Southwestern Part of Korean Peninsula (시아해의 수질환경과 식물플랑크톤 생물량의 시ㆍ공간적 분포특성과 기초생물량변동에 영향을 미치는 환경특성)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2000
  • Field survey on the spatio-temporal distribution of water quality and chlorophyll a concentration, and the environmental factors on the variation of phytoplankton biomass were carried out at the 23 stations for four seasons in the Shiahae, southwestern coast of Korean Peninsula from February to October in 1995. I made an analysis on biological factor as chlorophyll a concentration as well as environmental factors such as water temperature, salinity and nutrients; ammonia, nitrite, nitrate, dissolved inorganic nitrogen, phosphate, N/P ratio, silicate and Si/P ratio. The waters in the Shiahae were not stratified due to the tidal mixing and high velocity of tidal current. And the high productivity in photic layer were supported by high nutrients concentration from freshwater on lands and bottom waters The low depth of transparency in the Shiahae had a bad influence upon primary production and marine biology. In Shiahae had a sufficient nutrients for primary production during a year. Especially dissolved inorganic nitrogen and silicate were high, the other side, phosphate was low. The source of nutrients in summer and silicate supply depend on input of freshwater from lands, the other side, dissolved inorganic nitrogen and phosphate were depend on rather supplied from bottom layer by the mixing and input of seawater from outside than input of freshwater from lands. Phosphate seemed to become a limiting nutrient for the primary production at all area of Shiahae in winter and at the northern parts in other seasons. However, dissolved inorganic nitrogen seemed to do it at the southern parts in other seasons except winter. Silicate didn't become a limiting nutrient for diatoms in Shiahae. Phytoplankton biomass as measured by chlorophyll a concentration was very high all the year round, it was controlled by the combination of the several environmental factors, especially of nitrogen, phosphorus and the physical factors such as light intensity. [Spatio-temporal distribution, Seasonal fluctuation, Nnutrients, Chlorophyll a, Environmental factors, Nutrient source, Limiting Nutrient, Light, Shiahae] .

  • PDF

Effects on Water Quality and Rice Growth to Irrigation of Discharge Water from Municipal Waste Treatment Plant in Rice Paddy during Drought Periods (한발기 벼 재배시 하수종말처리장 방류수 관개에 따른 논의 수질 및 벼 생육에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Kim, Jin-Ho;Yun, Sun-Gang;Choi, Chul-Mann
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Objective of this study was to access the environmental impacts of the use of discharge water from municipal waste water treatment plant as alternative irrigation resources during drought season for rice cultivation. For the field experiments, it was observed that plant growth and yield characteristics at 20 days of alternative irrigation period with application of FAST (fertilizer application based on soil test) 50% were relatively the same as the control. For the surface water quality, it appeared that $EC_i$ (electrical conductivity of irrigation water) and SAR (sodium adsorption ratio) values of DMWT (discharge waters from municipal wastewater treatment plant) irrigation were twofold higher than those of ground water irrigation as the control regardless of fertilization levels. For the irrigation periods, there were not significantly difference between 10 and 20 days of treatments, but $EC_i$ and SAR values of surface water were highest at 30 days of irrigation periods at initial rice growing stages. Generally, $EC_i$ values of percolation water in all the treatments were gradually increasing until 30days after irrigation, and then decreasing to harvest stage. Overall, it might be considered that there was possibility to irrigate DMWT with application of FAST 50% for 20 days of drought periods at rice transplanting season. Furthermore, efficiency rate of alternative irrigation water for 20 days of drought period was 32.7% relative to the total annual irrigation water for rice cultivation.