• Title/Summary/Keyword: 이상 수질

Search Result 1,235, Processing Time 0.046 seconds

Developmental Abnormality in Agricultural Region and Toxicity of the Fungicide Benomyl on Korea salamander, Hynobius leechii (한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성효과)

  • Choi, Yeoung-Ju;Yoon, Chun-Sik;Park, Joo-Hung;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.198-212
    • /
    • 2002
  • A numerical variation and abnormalities were studied on egg bags and embryos of Korean salamander, Hynobius leechii from agricultural habitat. The teratogenic and toxic effects of fungicide benomyl were also investigated with early embryos from non-agricultural habitat. We collected 144 egg bags from agricultural region, and 3418 of early embryos were contained. The lengths of egg bags were varied from 10 to 23 cm and the most frequent length was 19 cm. The number of embryos was varied from 7 to 43, and the most frequent range was 22 to 26. Spontaneous abnormalities were occurred in 406 embryos among 116 egg bags, and 24 kinds of external abnormalities were found. Individuals showing severe external defect were histologically studied and they showed optic dyspalsia, thyroid carcinoma, somatic muscular dysplasia, partial biaxial structure, decrease of red blood cells in the heart, cephalic degeneration and intestinal dysplasia. 385 embryos from non-agricultural region were exposed to 200 nM${\sim}$ 1 ${\mu}$M of benomyl at blastula or gastrula for 12 days. All embryo were dead in the concentration of 1 ${\mu}$M (LD$_{100}$) and 75% of embryos were dead in 800nM of benomyl. Speciflc effect due to benomyl was acrania or cephalic dysplasia and this restult suggests that the benomyl inhibit stongly to the development of neural tissue. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of the movement of neural crest cells.

A study on machine learning-based anomaly detection algorithm using current data of fish-farm pump motor (양식장 펌프 모터 전류 데이터를 이용한 머신러닝 기반 이상 감지 알고리즘에 관한 연구)

  • Sae-yong Park;Tae Uk chang;Taeho Im
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.37-45
    • /
    • 2023
  • In line with the 4th Industrial Revolution, facility maintenance technologies for building smart factories are receiving attention and are being advanced. In addition, technology is being applied to smart farms and smart fisheries following smart factories. Among them, in the case of a recirculating aquaculture system, there is a motor pump that circulates water for a stable quality environment in the tank. Motor pump maintenance activities for recirculating aquaculture system are carried out based on preventive maintenance and data obtained from vibration sensor. Preventive maintenance cannot cope with abnormalities that occur before prior planning, and vibration sensors are affected by the external environment. This paper proposes an anomaly detection algorithm that utilizes ADTK, a Python open source, for motor pump anomaly detection based on data collected through current sensors that are less affected by the external environment than noise, temperature and vibration sensors.

A study on the causal analysis and reduction measures of blue-green algae using the EFDC model (EFDC 모델을 이용한 남조류 발생 원인 분석 및 저감 방안 연구)

  • Yu, Nayoung;Kim, Segeun;Yun, Jinhyuk;Seo, Dongil;Hwang, Hyundong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.797-808
    • /
    • 2024
  • In this study, a comprehensive review of hydraulics and water quality was conducted to analyze the cause of algal bloom in the Sueo Dam, which is currently operating by connecting a waterway tunnel from another water system(Seomjin River→Sueo Dam) in order to resolve the problem of water supply shortage, after the 2021 algae warning level was issued. It was analyzed that the period when the number of blue-green algae cells increased rapidly in the Sueo Dam was when the water temperature was above 26℃, and it was closely related to the increase in the concentration of T-P in Sueo Dam when the inflow through the waterway tunnel increased rather than the inflow into the watershed itself. The analysis using the EFDC+ lake model identified water temperature as the primary growth-limiting factor for blue-green algae from November to April(when temperatures are below 20℃), while phosphorus was determined to be the limiting factor during the months of June to October, when algal cell counts increase. In addition, as a result of a comparative analysis of the period of increase in the number of blue-green algae cells in 2021 and 2022, it was analyzed that blue-green algae can grow rapidly when the water age is more than 30 days and the T-P concentration is more than 0.025 mg/L. The application of the EFDC+ model confirmed that reducing surface water age through changes in the dam's water intake levels contributes to decreased blue-green algae growth. Based on these findings, it is expected that developing operational strategies tailored to the specific characteristics and purposes of the dam will help mitigate algae occurrences and improve water quality management.

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

Characteristics in Chemical Properties of Agricultural Groundwater in Gyeongnam Province (경남지역 농업용 지하수의 수질특성)

  • Lee, Seong-Tae;Kim, Eun-Seok;Song, Won-Doo;Kim, Jin-Ho;Kim, Min-Kyeong;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.698-703
    • /
    • 2012
  • This survey was conducted to obtain basic data of the quality of groundwater for agriculture in Gyeongnam province. Groundwater samples from paddy 15, upland 15, and plastic film house 30 sites were collected on April, July, and October in every two years from 2002 to 2008. According to the result of water quality analysis, groundwater quality was suitable for irrigation purpose averagely. The $NO_3$-N contents by land use were in the order of plastic film house > upland > paddy field and its contents were 6.53, 4.80, and $3.68mg\;L^{-1}$, respectively. In annual changes of water quality, pH was no significant change in paddy, upland, and plastic film house by 6.6~6.9. EC was increased in upland and plastic film house in 2008 and majors factors were $NO_3$-N and $Cl^-$. In upland and plastic film house, $NO_3$-N contents were 4.72 and $6.52mg\;L^{-1}$ in 2002, respectively, whereas they were 5.63 and $8.70mg\;L^{-1}$ in 2008, respectively. Of the investigated sites, $NO_3$-N was exceeded water quality standards for agriculture by 3.3~15.0% in plastic film house and $Cl^-$ was exceeded water quality standards for agriculture by 2.2% in upland of 2004. The $NO_3$-N contents were decreased with well depth and their contents were $5.38mg\;L^{-1}$ from 3~10 m, $4.87mg\;L^{-1}$ from 10~20 m, and $2.58mg\;L^{-1}$ from above 30 m. The $NO_3$-N contents by soil texture were highest in sandy loam by $5.73mg\;L^{-1}$ and lowest in clay loam by $4.13mg\;L^{-1}$. The $NO_3$-N contents by crops category were in order of fruit vegetables > leaf vegetables > rice > fruits > beans, contents of fruit vegetables and leaf vegetables were 5.81 and $5.30mg\;L^{-1}$, respectively.

A Diagnosis of Ecological Health Using a Physical Habitat Assessment and Multimetric Fish Model in Daejeon Stream (물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단)

  • Kim, Ja-Hyun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.361-371
    • /
    • 2005
  • The objective of study was to diagnose integrative ecological health of Daejeon Stream, one of the tributaries of Guem River, during May 2004 ${\sim}$ April 2005. The research approach was primarily based on a Qualitative Habitat Evaluation Index (QHEI) and the Index of Biological Integrity (IBI) using fish assemblage. These outcomes were compared with conventional chemical dataset. For the experiment, four sampling sites were chosen from Daejeon Stream and long-term water quality data during 1995 ${\sim}$ 2004 (obtained from the Ministry of Environment) were analyzed in the spatial and temporal aspects. For the biological health assessment, we developed a stream health assessment model (SHA model) far regional applications. We found that current water quality conditions, based on the COD, BOD, TN and TP, were enhanced by 1.6 ${\sim}$ 5.3 fold over the period of 1995 ${\sim}$ 2004 and that the parameters showed a typical longitudinal decline from the upstream to downstream reach. The differences of water quality between the two reaches were more than 4.4 times, indicating a large spatial variations within the stream. The health conditions, based on the SHA model, averaged 23 and varied from 20 to 26 depending on the sampling stations. Values of the QHEI varied from 39 (Poor condition) to 124 (Cood condition)and values of QHEI in the reach of S2 ${\sim}$ S4 had significantly lower than in the headwater site (S1). Also, biological stream health, based on the criteria of US EPA (1993), was judged as 'Poor condition', in the S4 where TN, TP, BOD and COD were highest. In the meantime, maximum value of SHA (26) was found in the upstream reach (S1) where the water quality and QHEI were best. We also found that compositions of sensitive species showed a linear function with water quality conditions and this pattern was evident in the tolerant species. Thus, the biological stream health, based on the SHA model, matched well water chemistry. Overall outcomes suggest that the biological health impact was a function of chemical degradation and physical habitat quality in the stream.

Relation of Stream Shape Complexity to Land Use, Water Quality and Benthic Diatoms in the Seom River Watershed (섬강 수계에서 하천 형태복잡도와 토지이용, 수질 및 부착규조류 군집 분포와의 관계)

  • Min, Han-Na;Kim, Nan-Young;Kim, Mi-Kyung;Lee, Sang-Woo;Hwang, Kil-Soon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.110-122
    • /
    • 2012
  • This study examined the benthic diatom community distribution, land cover/use and water quality in relation to stream shape complexity (SSC) in the Seom River watershed. SSC showed a significant relation to the riparian land cover/use pattern and also water quality variables of the studied streams. Streams with high stream shape complexity (HSC) appeared to have a high proportion of forest and farmland, while streams having a low stream shape complexity (LSC) appeared to have high proportion of city. Streams with lower SSC showed higher nutrients concentration in the stream waters. Benthic diatom species composition and dominant species appeared to be similar regardless of SSC differences among the studied streams, while the variation of diatom density was manifested with SSC. The relative abundance of dominant benthic diatoms varied with SSC. Saprophilic diatoms were dominant in the streams of LSC, while saproxenic diatoms were dominant in the streams of HSC. During the evaluation of biological water quality using the benthic diatom indices, Trophic Diatom Index (TDI) and Diatom Assemblage Index to organic water pollution (DAIpo), the streams of LSC generally showed poorer water quality than those of MSC (Middle stream shape complexity) and HSC. In particular, BOD, TP, and $PO_4$-P showed significant relationships with DAIpo. In conclusion, shape complexity of streams in the Seom River watershed showed a close relation with benthic diatom distribution. This relation seemed to primarily be resulted from the effect of proximate factors, such as water quality, which might be affected by the land use types determining the degree of SSC.

Water Quality and Epilithic Diatom Community in the Lower Stream near the South Harbor System of Korean Peninsula (한반도 서남부 하천 하구역의 수질 및 부착돌말 군집 특성)

  • Kim, Ha-Kyung;Lee, Min-Hyuk;Kim, Yong-Jae;Won, Du-Hee;Hwang, Soon-Jin;Hwang, Su-Ok;Kim, Sang-Hoon;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.551-560
    • /
    • 2013
  • Environmental factors and epilithic diatom communities in the lower streams near the harbor region of South Korean peninsula were examined during no monsoon period in May 2013. The sampling of water and epilithic diatoms was conducted at both streams, 19 regulated streams (RS) that there are one or several dams constructed in the river system, and 19 un-regulated streams (US) that there are no dams within the river. A cluster analysis based on the number of species and abundance of epilithic diatoms through the stations, divided into three groups such as groups I (mainly US), II (mixed with US and RS) and III (mainly RS), respectively. Group I showed that water quality is good and high diversity of diatom, while Group II and III was water quality is relatively poor, but not differed in biomass of diatom from Group I. In addition, Group II that had high conductivity, nitrogen and phosphorus, was the lowest in diatom diversity among them. Dominant species were Nitzschia palea (17%) and Navicula seminuloides (11%) in Group I, Nitzschia inconspicua (19%) and Navicula perminuta (9%) in Group II, and Nitzschia inconspicua (15%) and Nitzschia palea (14%) in Group III, respectively. These taxa were widely distributed in brackish water, and not closely related with specific water quality, like eutrophic water. However, the groups II and III belonged to RS, had not only little biomass, but bad water quality such as high concentrations of nutrient and chlorophyll-a. Therefore, to determine the effect of dam construction on the lower water ecosystem, the planktonic algae, which can occur algal bloom in the estuary, also was considered to be a parallel investigation.

The Trend and Assessment of Water Pollution from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류의 오염 양상과 수질평가)

  • Rim, Chang-Soo;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.51-60
    • /
    • 2000
  • In order to understand the trend and assessment of water pollution, seasonal water quality was determined in the main river and the tributaries from midstream to downstream of the Kum River from March 1998 to June 1999. Among environmental factors, the variation of nitrogen, phosphorus and chlorophyll-a was distinctive on an aspect of increase and decrease relatively to others, and particularly the impact of inorganic N ${\cdot}$ P inflowing into the main river was observed to be more significant at the Kapchon, Mihochon and Soksongchon among the tributaries. Water quality was highly related to hydrologic factor, and it was more deteriorated when water discharge maintains for a long time below normal flow or relatively at low condition of minimum and drought flow. These phenomena were remarkablee from December to March of the next year. $NH_4$ and SRP were decreased dramatically flowing toward the lower part of the river and chl-a was increased exponentially. While, the variations of $NO_3$ and $BOD_5$ were regular from midstream to downstream and there was no significant difference between the stations. Limiting nutrient for Phytoplankton growth seemed to be P than N because the ratio of TN/TP or DIN/SRP was relatively high as 42 or 544 in the main river, respectively. The main river and tributaries were ranked to be third grade, based on the assessment of BOD as an indirect indicator of organics, but particularly Kapchon was ranked to be over fifth grade. In addition, the inflow of high N ${\cdot}$ P nutrients from tributaries including Kapchon and Mihochon seemed to be major factor of the development of water pollution of the Kum River. On the other hand, persistent bloom of phytoplankton in lower part of the river was observed. As a conclusion, management of water quality for main source of pollution is urgent.

  • PDF

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.