• Title/Summary/Keyword: 이상 수질

Search Result 1,235, Processing Time 0.023 seconds

Improvement of Water Quality for Contaminated Groundwater by $NO_3-N$ using Compression Packer in Boeun (압축패커를 이용한 보은지역의 질산성질소에 의한 오염지하수 수질개선)

  • Lee, Byeong-Dae;Yun, Uk;Yun, Seong-Taek;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • Most of contaminated groundwater in the study area was contaminated by $NO_3-N$ due to inflow of contaminated shallow surface groundwater inflow into groundwater well. Poor grouting and teared screen have increased contaminated shallow surface groundwater inflow into groundwater well. Contaminated shallow surface groundwater was inflowed into groundwater well throughout faults, joints and fracture zone of ESE-WNW, NNW, NW-SE and NS direction. The objective of this paper is to evaluate an improvement of water quality for contaminated groundwater by $NO_3-N$ using compression packer. For this study groundwater samples collected from 46 groundwater wells were analyzed to clarify $NO_3-N$ contents. Groundwater wells over 10 mg/L in $NO_3-N$ content is 9 wells showing 20% among total samples. $NO_3-N$ contents after compression packer installation showed 26~81% low value compared with before compression packer.

The Impact of Monsoon Rainfall on the Water Quality in the Upstream Watershed of Southern Han River (하절기의 집중강우가 남한강 상류수계 수질에 미치는 영향)

  • Park, Sung-Min;Shin, Yoon-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.373-384
    • /
    • 2011
  • The objective of this was to determine how the seasonal intensive rainfall influenced the water quality, and to analyze the long-term temporal trend of water chemistry and spatial heterogeneity in the upstream watershed of Southern Han River using water quality dataset from 1997 to 2007. The largest seasonal variability in most parameters occurred during the two month July and August and there were closely associated with a large spate of summer monsoon rain. Total phosphorus (TP), chemical oxygen demand (COD), and suspended solids (SS) were greater during summer than any other seasons, and had a direct correlation with precipitation (r>0.4, p<0.01, n-120). In addition, dissolved oxygen (DO) had and inverse function with precipitation (r=-0.542, p<0.01). Overall, the data of total phosphorus (TP) and suspended solids (SS) showed that water quality was worst in Site I1, compared to the others. This was due to continuous effluents from the highlands' fields and cattle farms within the upstream area of Doam lake (Song stream). Based on the overall dataset, an efficient water quality management is required in the highlands and farms areas for better water quality with precipitation (r.0.4, p<0.01, n=120).

Analysis of Environmental Factors of Geomorphology, Hydrology, Water Quality and Shoreline Soil in Reservoirs of Korea (우리나라 저수지에서 지형, 수문, 수질 및 호안 토양 환경요인의 분석)

  • Cho, HyunSuk;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.343-359
    • /
    • 2013
  • In order to understand shoreline environment characteristics of Korean reservoirs, the interrelationships between environmental factors of geomorphology, hydrology, water quality and shoreline soil were analyzed, and the reservoir types were classified according to their environmental characteristics in the 35 reservoirs selected by considering the purpose of dam operations and annual water-level fluctuations. Geomorphological and hydrological characteristics of reservoirs were correlated with the altitude and the size scale of reservoirs. The annual range of water level fluctuation showed a wide variation from 1 m to 27 m in the various reservoirs in Korea. The levels of eutrophication of most reservoirs were mesotrophic or eutrophic. From the result of the soil texture analysis, sand contents were high in reservoir shorelines. Range, frequency and duration of water-level fluctuation were distinctive from the primary function of reservoirs. Flood control reservoirs had a wide range with low frequency and waterpower generation reservoirs had a narrow range with high frequency in the water-level fluctuation. According to the result of CART (classification and regression tree) analysis, the water quality of reservoirs was classified by water depth, range of water-level fluctuation and altitude. The result of PCA (principal component analysis) showed that the type of reservoirs was classified by reservoir size, water-level fluctuation, water quality, soil texture and soil organic matter. In conclusion, reservoir size, the water-level fluctuation, water quality and soil characteristics might be major factors in the environment of reservoir shorelines in Korea.

The Effects of Bed-rock Formations on Water Quality and Contamination : Statistical Approaches (수자원의 수질과 오염에 대한 기반암의 영향 연구 : 통계학적 접근)

  • 이병선;우남칠
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.415-429
    • /
    • 2003
  • This study was objected to identify the difference of water quality and the characteristics of water contamination in adjacent bed-rock areas of Upper Hwajeonni and Guryongsan Formations in Miwon, Choongchungbuk-do, Korea. Water samples showed mainly (Ca, Mg)-$HCO_3$ type in Upper Hawjeonni Formation and (Ca, Mg)-$SO_4$ and (Ca, Mg)-$HCO_3$ types in Guryongsan Formation indicating the enrichment of $SO_4$ in major compositions. Groundwater quality could be divided into two groups based on the major weathering processes, implied by the ratio of bicarbonate to silica. Carbonate-silicate weathering predominates in Upper Hwajeonni Formation, and silicate weathering in Guryongsan Formation. Stream-water quality also appeared to be controlled by water-rock interaction. Cluster analysis identified three groups of groundwater and four groups of stream-water with distinctive geochemical characteristics. The results of factor analysis indicated that the levels of each chemical constituent in water samples derived from both natural weathering reactions and anthropogenic contamination sources. To delineate the pollution potential of water resources, Modified Pollution Index(M.P.I.) was developed. M.P.I. scores of water samples ranged from -0.08 to 0.18, with mostly positive along the rock quarry in Guryongsan Formation areas. M.P.I. scores appeared to be a useful predictor of metal contamination of water resources.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Estimation of citizen's willingness to pay for water quality improvement on urban rivers (도시하천 수질개선을 위한 시민의 지불의사액 추정 연구)

  • Kang, Jiyoon;Yang, Jinwoo;Hwang, Youngsoon;Kim, Keewook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.225-233
    • /
    • 2023
  • Urban rivers and their surrounding environments have been altered due to factors such as rapid economic growth and urban development. This alteration have caused the rivers to lose their original value and become exposed to various pollution, resulting decrease in citizens' quality of life. This study aims to estimate citizens' Willingness To Pay (WTP) for water quality improvement in Suyeong River in Busan. To estimate the non-market value of the Suyeong River, the WTP of Busan citizens for water quality improvement was estimated, applying Contingent Valuation Method (CVM). The WTP for improving the water quality from Grade 4(polluted water) to Grade 2(game fish like bass can live in it) was estimated using the water quality ladder concept of the US Environmental Protection Agency, assuming annual donations for five years. For the CVM, the logistic distribution and Spike Model were adopted. As a result, citizens residing in the surrounding area of Suyeong River expressed a higher WTP. Considering more than half of the Busan citizens are aware of the "conservation of nature and ecosystems" as a major function of the Suyeong River, this higher WTP could serve as a basis for improving the value of urban rivers.

Effect of Sampling Frequency During Storm Period on Estimation of Pollutant Load from Paddy Field (강우시 채수빈도가 논 오염부하량 산정에 미치는 영향)

  • Han, Kuk-Heon;Kim, Jin-Ho;Lee, Jong-Sik;Lee, Jeong-Taek;Cho, Jae-Young;Yoon, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • In order to examine effects of sampling frequency during rainfall-runoff process from paddy field on the estimation of pollution load, EMCs of several water sampling frequencies were examined. Water quality samples were conducted by every two hours interval for each event. It was found that difference of load estimation between five times sampling and two hours consecutive sampling during rainfall-runoff showed $15.2{\sim}-15.2%$ for T-N, $20.0{\sim}-26.2%$ for T-P, $28.6{\sim}-35.7%$ for the SS, respectively. In the same way, the effects of number of sampling data on estimation of pollution load using runoff-mass load(L-Q) method were investigated. L-Q equation made of five times sampling data provided 10% differences in estimation of mass loads of T-N, T-P, and SS when compared to those by L-Q equation using entire two hours consecutive sampling data during runoff process.

Characteristics of Groundwater Quality by Elevation in Cheju Island (고도에 따른 제주도 지하수의 수질특성)

  • 이용두
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.65-75
    • /
    • 2001
  • This study purpose to elucidate the characteristics of water quality by elevation and groundwater samples has been studied with the samples from 150 selected groundwater represented the watershed of groundwater wells in Cheju Island. The evaluation of the characteristics of water quality utilized the physical and chemical property and the statistical analysis. According to the piper diagram, groundwater in the under 50 m region is shown N $a^{+}$$K^{+}$-C $l^{[-10]}$ type, and that groundwater in the 50~100 m region is shown N $a^{+}$$K^{+}$-HC $O_3$$^{[-10]}$ +C $O_3$$^{2-}$ type. and partly N $a^{+}$$K^{+}$-C $l^{[-10]}$ type. In the above 100 m region belongs to N $a^{+}$$K^{+}$-HC $O_3$$^{[-10]}$ +C $O_3$$^{2-}$ type. The result of factor analysis, commonly two factors as TDS(Total Dissolved Solid) and the contaminants extracted in the under 50m region and above 100 m region. Three factors were obtained from the result of the factor analysis in the 50~100 m region. Factor 1, consisting of TRS content. Factor 2, consisting of the contaminant and the dissolution of minerals. and Factor 3, consisting of HC $O_3$$^{[-10]}$ content. content.

  • PDF

Application of QUAL2E Model to Water Quality Prediction of the Nam river (남강의 수질예측을 위한 QUAL2E 모델 적용)

  • Choi, Hyoung-Sub;Park, Tae-Ju;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • This research was conducted to apply the QUAL2E model to be adopted to the Nam river under current water quality conditions. The survey area of total 60 Km was divided into five reaches. Each reach was then subdivided into the uniform computational elements of 1.5 Km. Based on the stream characteristics, nine sampling stations consisting of six at main streams and three at tributaries were selected. The field data were obtained from the selected stations twice during October of 1991 and May of 1992, which represented the cold weather and low flow, also the warm weather and low flow conditions, respectively. As the results of sensitivity analysis of the model, the important parameters were the rates of BOD decay, Org-N oxidation, $NH_3-N$ oxidation, Org-P decay. The calibrated and verified results by QUAL2E model were correlation coefficient of $0.45{\sim}0.94$. The results displayed a good agreement between the variables of the field measurements and the model simulations, indicating a potential use of the QUAL2E model for the water quality assessment in the Nam River.

  • PDF

A Study on Clogging and Water Quality Improvement in Floodplain Filtration with Flood/rest Raw-water Supply (범람/휴지식 홍수터여과에서 폐색현상 및 수질개선도 연구)

  • Kim, Hoh-Seok;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • A pilot-scale experiment of floodplain filtration with a filtration depth of 3.6m was performed employing flood/rest type raw-water supply system in an effort to find ways to improve river water quality by additional treatments of discharged effluent from sewage treatment plant. Soil samples were taken from 3 sites including Gumi, Daegu and Gimhae along the Nakdong river. Reductions of infiltration rates following increases in operating time was investigated in each soil sample, along with the analysis of removal efficiencies of various pollutants according to different depths and infiltration rates. The results show incremental development of clogging on the soil surface with increases in operation time, and illustrate exponential decrease in the infiltration rate. The time required for the removal of the clog from the soil surface was longer than 2 weeks for all soil samples analyzed. The stable infiltration rates for soils were 5 m/day for Gumi and for Daegu and Gimhae was 1 m/day. In unsaturated soils dissolved oxygen levels increased following the increase of filtration depth, suggesting that alternating application of flood and rest for raw-water supply effectively keeps the soil environment aerobic. For all soils, the nature of pollutant removal depending on the depth of filtration remained the same regardless of the infiltration rate. Most of the BOD and turbidity were removed within 1.2 m, about 30% of COD was removed within 3.6m and was expected to be removed further with increases in filtration depth. Nitrification occurred near the surface of all soils; however there was no significant removal of nitrogen in the filtration depths tested in this study. Although removal rate of phosphorus was low for Gumi's soil, it was high enough for other soils, suggesting that the method developed in this study could significantly improve river water quality.