• Title/Summary/Keyword: 이상 감지 시스템

Search Result 427, Processing Time 0.034 seconds

A Study on Measurement of Penetration Depth of Steel Pipe Using the Impact-Echo Method (충격탄성파법에 의한 강관구조물 근입깊이 측정에 관한 연구)

  • Lee, Sang Hun;Kumagai, Takayuki;Endo, Takao;Han, Youn Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.89-89
    • /
    • 2011
  • 도로의 가드레일 지주 근입깊이의 부족에 의한 자동차의 전락사고 이 후, 일본의 국토교통성 등의 관계자들이 그 대책 세우기에 부심해 왔으나, 기설 지주의 근입깊이를 측정할 수 있는 방법은 아직까지 알려져 있지 않으며, 현재로서는 작업의 전 과정을 비디오로 촬영하여 그 기록을 남기도록 되어있다. 그러나 그것은 상당히 비효율적인 작업으로 엄밀한 감시기능을 다하지 못하고 있으며, 감독자와 시공자의 양자로부터 계측 도구의 개발이 절실히 요구되고 있다. 일부의 초음파 측정기 업자가 가드레일 지주의 근입깊이를 측정할 수 있다고 주장하고 있으나, 시장에는 아직 나타나지 않고 있으며, 그 측정시스템의 측정여부와 성능의 검증이 이루어지지 않고 있는 상황이다. 지금까지 충격탄성파법 또는 초음파법을 이용하여, 매설된 가드레일 지주의 근입깊이를 측정한 성공사례가 정식으로 보고된 바는 없으며, 같은 강관주인 눈사태 방지책의 지주 파이프에 대한 근입깊이의 측정은 본 연구그룹의 의해 행하여진 바가 있다. 검사봉이나 해머 등으로 대상물을 두드려서 탄성파를 발생시키고, 그것을 가속도계 또는 속도계의 진동센서로 감지하여 그 파형을 분석함으로써 대상물의 치수 등을 측정하는 충격탄성파법은, 특히 콘크리트를 대상으로 공동 및 매설물 등의 탐사, 균열깊이의 측정 등에 폭 넓게 사용되고 있다. 하지만 이 측정방법을 가드레일의 지주의 근입깊이 측정에 적용할 경우, 일반적으로 행하여지는 방법, 즉 진동센서를 대상물의 상단부(캡)에 설치하는 방법으로는 접합부에 의한 탄성파의 손실과 캡의 휨 진동에 의한 노이즈 등을 해결하기가 곤란해진다. 또한 지반의 존재로 인한 진동 모드의 변화와 진동에너지의 감소 등의 문제점을 해결하지 않으면 안 된다. 본 연구는 충격탄성파법을 이용하여 지반에 설치된 눈사태 방지책이나 가드레일의 지주와 같은 강관 구조물의 근입깊이를 측정하고자 하는 연구이다. 이를 위해 진동센서를 캡이 아닌 측면부에 취부장치를 이용하여 설치함으로써 길이방향의 탄성파를 측정할 수 있도록 하고, 실제 구조물에 대해 측정을 실시하여 그 측정시스템의 성능과 유용성을 검토하고자 한다. 또한 다양한 길이의 실험용 강관 파이프를 매설하고 측정실험을 실시하여 측정시스템의 적용성에 대해서도 검토하였다. 본 연구를 통하여, 수신센서를 파이프의 측면에 선접촉하게 함으로서 종파를 감지하여 근입깊이를 포함한 파이프의 전 길이를 측정하는 본 측정시스템은 매설된 강관 구조물의 길이 측정에 기본적으로 적용 가능함을 확인할 수 있었다. 특히 오거 굴착으로 시공된 경우에는 높은 정도의 측정성능을 보여주었다. 또한 항타관입 파이프에 대해서는 지반의 영향을 고려함으로써 길이의 측정이 가능하다는 것을 확인할 수 있었다. 즉, 오거 굴착 또는 항타 관입 등 시공방법에 따라 측정결과에 대한 지반의 영향 정도가 달라지며 파형 분석 및 길이 산정시 그 영향을 고려하여야 함을 확인하였다.

  • PDF

Prediction of Semiconductor Exposure Process Measurement Results using XGBoost (XGBoost를 사용한 반도체 노광 공정 계측 결과 예측)

  • Shin, Jeong Il;Park, Ji Su;Shon, Jin Gon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.505-508
    • /
    • 2021
  • 반도체 회로의 미세화로 단위 공정이 증가하면 TAT(turn-around time) 증가에 따른 제조 비용이 늘어난다. 반도체 공정 중 포토 공정은 마스크의 회로를 웨이퍼에 전사하는 공정으로 전사를 담당하는 노광장비의 성능에 의해 회로의 정확성이 결정된다. 이런 정확성을 검증하는 계측공정은 회로의 미세화가 진행될수록 필요성은 증가하나 TAT 증가의 주된 요인으로 최근 기계학습을 사용한 다양한 예측 모형들의 개발로 계측 결과를 예측하는 실험들이 진행되고 있다. 본 논문은 노광장비 센서들의 이상값을 감지하여 분류 후 계측공정을 진행하는 LFDC(Lithography Fault Detection and Classification) 시스템의 문제인 분류 성능이 떨어지는 것을 해결하기 위해 XGBoost를 사용하여 계측공정을 진행하지 않고 노광장비 센서의 이상값을 학습된 학습기를 통해 분류하여 포토 공정을 재진행하거나 다음 공정을 진행하는 방법을 실험하였다. 실험에서 사용된 계측 결과 예측 모형은 89%의 정확도를 확보하였고 반도체 데이터 특성인 심각한 불균형의 데이터에 대해서도 같은 정확도를 얻었다. 이런 결과는 노광장비 센서들의 이상값에 대해 89%는 정상으로 판단하였고 정상으로 판단한 웨이퍼를 실제 계측 시 예측과 같은 결과를 얻었다. 계측 결과 예측 모형을 사용하면 실제 계측을 진행하지 않고 노광장비 센서들의 이상값에 대한 판정을 할 수 있어 TAT 단축으로 제조 비용감소, 계측 장비 부하 감소 및 효율 향상을 할 수 있다. 하지만 본 논문에서는 90%의 성능을 보이는 계측 결과 예측 모형으로 여전히 10%에 대해서는 실제 계측이 필요한 문제에 대해 추후 더 연구가 필요하다.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Multi-advanced Sensor-based Building Disaster Prevention Detection System (다중첨단센서기반 건축물 재난방지 감지 시스템)

  • Lim, Jaedon;Kim, Jungjip;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.567-568
    • /
    • 2018
  • In recent years, there have been frequent occurrences of collapsing buildings and tilting accidents due to frequent earthquakes and aging of buildings. Various methods have been proposed to prevent disasters on these buildings. In this paper, we propose a system algorithm that provides an indication of anomalous phenomena such as collapse and tilting of buildings by real - time monitoring of IoT (Internet of Things) - based architectural anomalies. The multi-advanced sensor is based on the Inclinometer sensor and the Accelerometer sensor, transmits the detected data to the server in real time, accumulates the data, and provides the service to cope when the set threshold value is different. It is possible to evacuate and repair the collapse and tilting of the building by warning the occurrence of the upper threshold event event such as the collapse and tilting of the building.

  • PDF

Safety Monitoring System of Structures Using MEMS Sensor (MEMS 센서기반의 구조물의 안전 모니터링 시스템)

  • Lim, Jaedon;Kim, Jungjip;Hong, Dueui;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1307-1313
    • /
    • 2018
  • In recent years, there have been frequent occurrences of collapsing buildings and tilting accidents due to frequent earthquakes and aging of buildings. Various methods have been proposed to prevent disasters on these buildings. In this paper, we propose a system that provides an indication of anomalous phenomena such as collapse and tilting of buildings by real-time monitoring of IoT(Internet of Things) based architectural anomalies. The MEMS sensor is based on the inclinometer sensor and the accelerometer sensor, transmits the detected data to the server in real time, accumulates the data, and provides the service to cope when the set threshold value is different. It is possible to evacuate and repair the collapse and tilting of the building by warning the occurrence of the upper threshold event such as the collapse and tilting of the building.

Offline In-Hand 3D Modeling System Using Automatic Hand Removal and Improved Registration Method (자동 손 제거와 개선된 정합방법을 이용한 오프라인 인 핸드 3D 모델링 시스템)

  • Kang, Junseok;Yang, Hyeonseok;Lim, Hwasup;Ahn, Sang Chul
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-23
    • /
    • 2017
  • In this paper, we propose a new in-hand 3D modeling system that improves user convenience. Since traditional modeling systems are inconvenient to use, an in-hand modeling system has been studied, where an object is handled by hand. However, there is also a problem that it requires additional equipment or specific constraints to remove hands for good modeling. In this paper, we propose a contact state change detection algorithm for automatic hand removal and improved ICP algorithm that enables outlier handling and additionally uses color for accurate registration. The proposed algorithm enables accurate modeling without additional equipment or any constraints. Through experiments using real data, we show that it is possible to accomplish accurate modeling under the general conditions without any constraint by using the proposed system.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Reconstruction and Change Analysis for Temporal Series of Remotely-sensed Data (연속 원격탐사 영상자료의 재구축과 변화 탐지)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2002
  • Multitemporal analysis with remotely sensed data is complicated by numerous intervening factors, including atmospheric attenuation and occurrence of clouds that obscure the relationship between ground and satellite observed spectral measurements. Using an adaptive reconstruction system, dynamic compositing approach was developed to recover missing/bad observations. The reconstruction method incorporates temporal variation in physical properties of targets and anisotropic spatial optical properties into image processing. The adaptive system performs the dynamic compositing by obtaining a composite image as a weighted sum of the observed value and the value predicted according to local temporal trend. The proposed system was applied to the sequence of NDVI images of AVHRR observed on the Korean Peninsula from 1999 year to 2000 year. The experiment shows that the reconstructed series can be used as an estimated series with complete data for the observations including bad/missing values. Additionally, the gradient image, which represents the amount of temporal change at the corresponding time, was generated by the proposed system. It shows more clearly temporal variation than the data image series.

Development of the Ice Machine Condition Monitoring System for Remote Diagnosis (원격진단을 위한 제빙기 상태 모니터링 시스템 개발)

  • Kim, Su-hong;Jeong, Jong-mun;Jung, Jin-uk;Jin, Kyo-hong;Hwang, Min-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.230-233
    • /
    • 2016
  • In this paper, we developed the ice machine conditions monitoring system that confirms conditions of the ice machine. The developed system is composed of Communication Board, Server Program, and Web-based User Application. Communication Board which is connected to the ice machine periodically sends various data, such as current, voltage, the refrigerant pressure and temperature, the external temperature and humidity. Server Program stores the data received from Communication Board into database. The manager or the ice machine operator can see the state of the own machine through User Application based on Web. When a symptom is detected on the ice machine, the manager and the operator can checks the current condition of the ice machine by using the data obtained in real time and also prevents the machine troubles by taking proper actions.

  • PDF

Architecture Design for Disaster Prediction of Urban Railway and Warning System (UR-DPWS) based on IoT (IoT 기반 도시철도 재난 예지 및 경보 시스템 아키텍처 설계)

  • Eung-young Cho;Joong-Yoon Lee;Joo-Yeoun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.163-174
    • /
    • 2024
  • Currently, the urban railway operating agency is improving the emergency telephone in operation into an IP-based "trackside integrated interface communication facility" that can support a variety of additional services in order to quickly respond to emergency situations within the tunnel. This study is based on this Analyze the needs of various stakeholders regarding the design of a system architecture that establishes an IoT sensor network environment to detect abnormal situations in the tunnel and transmits the collected information to the control center to predict disaster situations in advance, and defines the system requirements. In addition, a scenario model for disaster response was provided through the presentation of a service model. Through this, the perspective of responding to urban railway disasters changes from reactive response to proactive prevention, thereby ensuring safe operation of urban railways and preventing major industrial accidents.