위성항법시스템에서 위성 신호의 이상 발생 시 신속하게 위성시계의 고장 유무를 판단할 수 있도록 실시간 위성 시계 이상감지 시스템을 구축하였다. 위성 시계는 시스템 성능에 직접적인 영향을 미치는 핵심 요소로서 고장이나 이상 발생 시 측정치에 매우 큰 영향을 미칠 수 있다. 특정 위성 시계에 고장이나 이상이 발생한 경우 사용자들이 해당 위성의 측정치를 사용하지 않도록 가능한 빨리 이를 감지하고 공지할 수 있어야 한다. 현재 GPS의 경우 시스템 자체만으로는 위성 상태 정보가 적절한 시간 내에 제공되지 못하므로, 사용자가 직접 위성 신호의 사용 유무를 판단할 수 있는 위성 상태 감시 기능이 필요하다. 이 논문에서는 위성 시계 이상 발생 시 이를 실시간으로 감지할 수 있도록 한국항공우주연구에서 구축한 실시간 위성 시계 이상 감지 시스템에 대해 소개하고자 한다. 시스템 구현을 위해 적용한 방법은 크게 세 단계로 나뉠 수 있다. 첫 번째, 실시간으로 수신한 GPS 이중 주파수 측정치로부터 반송파 스무딩 필터를 적용하여 위성 시계 바이어스를 추정한다. 두 번째, 위성 위치 및 시계 정보의 실시간 적용을 위해 항법력보다 성능이 뛰어난 IGS Ultra-rapid 예측 정보를 활용한다. 마지막으로 위성시계 바이어스 추정치와 예측치를 비교하여 시계 이상 유무를 판별한다. 실제 위성 시계 이상이 발생한 위성의 측정치를 적용하여 시스템에 대한 검증시험을 수행하였고, 10 나노 초 수준의 위성 시계도약 현상이 발생한 위성의 감지를 통해 시스템의 성능을 확인하였다. 이는 항공항법분야와 같이 고성능의 위치 정보를 요구하는 응용분야에 신뢰성 있는 위성 정보 제공을 위해 활용될 수 있다.
퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.
화재감지시스템은 화재로부터 발생하는 열과 연기 등을 감지하여 화재발생을 조기에 관계자에게 경보하여 주는 시스템이다. 현재 이러한 화재감지시스템은 일정 규모 이상의 건축물에 필수적으로 설치되어 있으며 이 시스템으로 많은 인명과 재산이 보호되고 있다. 그러나 현재 설비되고 있는 화재감지시스템은 화재 시에 발생되는 열, 연기 등에 대하여 감지기회로에서의 미리 지정한 고정값과의 비교를 통하여 정해진 기준을 넘을 경우 화재로 판정한다. 그러나 고정값을 기준으로 신호를 발신하게 되어있는 화재감지기의 동작은 상황에 따라 불확실한 경우가 발생한다.(중략)
본 논문에서는 엣지 컴퓨팅 환경에서 머신러닝을 활용해 에스컬레이터 이상 감지 및 결함 분류를 하는 연구를 진행하였다. 엣지 컴퓨팅 기반 머신러닝을 사용해 에스컬레이터의 이상 감지 및 결함 분류를 위한 OneM2M환경을 구축하였으며 에스컬레이터에서 발생하는 소음에서 고장 유형에 따라 나타나는 주파수를 이용한다. Edge TPU를 활용해 엣지 컴퓨팅 시스템의 처리량을 최대화하고, 각 작업의 수행시간을 최소화함으로써 엣지 컴퓨팅 환경에서 이상 감지와 결함 분류를 수행할 수 있다.
본 논문은 부유식 풍력터빈의 블레이드 피치 시스템에서 발생하는 이상을 조기에 감지하기 위한 LSTM-Autoencoder 모델 기반의 이상징후 감지 시스템을 설명한다. 발전소 모니터링 시스템에 활용되는 센서 데이터는 주로 시계열 데이터로 구성되며, LSTM 네트워크는 이러한 시계열 데이터를 분석하기 위해 두 개의 단방향 LSTM 네트워크로 구성된다. 이를 통해 순차 데이터에 숨겨진 장기 의존성을 효과적으로 발견할 수 있다. 한편, 오토인코더 메커니즘은 정상상태 데이터로부터만 학습하여 이상상태를 분류될 수 있기 때문에 이 두 가지 네트워크를 결합하여 시스템에 발생하는 이상징후를 효과적으로 감지할 수 있다. 제안된 프레임워크의 효과를 입증하기 위해 풍력 터빈 모델에서 수집한 실제 다변량 시계열 데이터셋을 적용하였다. LSTM-AE 모델은 높은 이상징후 감지 정확도를 달성하여 우수한 성능을 보였다.
다양하게 복합된 소리 및 음성신호를 FPGA의 마이크로 입력받아서 신호를 분류하고 분석하여 이상 신호를 감지할 수 있는 많은 시스템이 있으나, 효율적이며 효과적으로 이상 신호를 감지하는 시스템을 구현하는데 있어서는 많은 문제점들을 가지고 있다. 따라서 이 문제를 해결하고 감지율을 높이기 위하여 본 연구에서 제안된 방법에서는 소리 신호가 입력되는 마이크 센서를 사용하여 FIFO(First-in First-out) 구조에 적용하고, 통계학적으로 분산과 변동계수를 적용한 알고리즘을 기반으로 이상 신호를 효과적으로 분류하고, 효율적으로 감지 여부를 출력하는 시스템을 제안하고 구현하였다. 제안된 알고리즘을 적용한 시스템을 통하여 100회 이상의 실험을 반복한 결과 96.3%의 감지율을 보였다.
스마트워터그리드와 같은 첨단 정보통신기술을 활용한 물 관리 기술의 도입으로 수도운영사업에서도 누수와 같은 이상사건인지 목적의 효율적 빅 데이터 분석기법의 중요성이 증대되고 있다. 국내외적으로 누수인지를 위한 다양한 연구기법, 범위, 계측항목, 샘플링 주기 등이 제시된 바 있으나, 이상감지시스템(Event Detection System, EDS)은 대상지역 특정적 특성을 가지고 있어 범용적인 모델을 구축하는 데는 어려움이 있다. 본 연구에서는 소블럭 단위의 유량자료 분석을 통한 이상감지시스템의 적용가능여부를 판별하고 적합 모델구축자료 방안을 제시하는 K-EDS 모델을 개발하였다. 모델분석의 절차는 자료획득, 자료 전처리, 탐색적 자료해석, 그리고 각 기법 평가로 진행된다. 개발된 모델을 다양한 특성을 가지는 실제 지방상수도시스템에 적용하여 분석하였으며, 최종적으로 모델적용 가능성과 영향인자 등을 도출하였다. 개발된 모델은 소블럭별 현장계측자료 기반의 이상감지모델 적용 적합도 판별에 활용될 수 있으며, 향후 누수 인지 및 누수지속시간 감소를 위한 SW로 개발이 가능하다.
본 논문에서는 Semi-supervised Learning 방식의 이상감지 방법을 제안한다. 취득한 소음 데이터를 이미지화 시킨 후 Convolution AutoEncoder 학습 방법을 이용하여 모델을 학습한다. 고장 데이터와 정상 데이터 간의 데이터 불균형 문제가 대두되기 때문에 정상 데이터만을 활용한 이상감지는 실제 산업현장의 상황에 알맞게 사용할 수 있을 것이라 기대한다.
프리징은 컴퓨터 시스템에서 하나의 프로세스나 시스템 전체가 입력에 대한 응답이 중단되고 제어가 불가능한 상태가 되는 현상이다. 비디오 월 컨트롤러의 제어 시스템도 OS에서 동작하는 애플리케이션이므로 프리징이 발생할 수 있지만, 운영자가 멀티 스크린을 실시간으로 모니터링 하고 있더라도 프리징의 발생을 인지하기 어렵고, 프리징을 인지하였을 때는 이미 제어가 불가능한 상태이므로 비디오 월 컨트롤러를 재부팅 하는 것 외에는 대응할 수 있는 방법이 없다. 따라서 본 논문에서는 비디오 월 컨트롤러의 이상 여부를 감지하여 프리징을 방지할 수 있는 모델을 제안한다. 이상 감지모델은 이산화 된 로지스틱 혼합 분포의 우도 함수를 이용하여 비디오 월 컨트롤러의 이상 여부를 감지한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.