• Title/Summary/Keyword: 이상 감지 시스템

Search Result 427, Processing Time 0.028 seconds

실시간 위성 시계 이상 감지 시스템 구축

  • Heo, Yun-Jeong;Im, Jun-Hu;Jo, Jeong-Ho;Heo, Mun-Beom;Nam, Gi-Uk
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.22.4-22.4
    • /
    • 2011
  • 위성항법시스템에서 위성 신호의 이상 발생 시 신속하게 위성시계의 고장 유무를 판단할 수 있도록 실시간 위성 시계 이상감지 시스템을 구축하였다. 위성 시계는 시스템 성능에 직접적인 영향을 미치는 핵심 요소로서 고장이나 이상 발생 시 측정치에 매우 큰 영향을 미칠 수 있다. 특정 위성 시계에 고장이나 이상이 발생한 경우 사용자들이 해당 위성의 측정치를 사용하지 않도록 가능한 빨리 이를 감지하고 공지할 수 있어야 한다. 현재 GPS의 경우 시스템 자체만으로는 위성 상태 정보가 적절한 시간 내에 제공되지 못하므로, 사용자가 직접 위성 신호의 사용 유무를 판단할 수 있는 위성 상태 감시 기능이 필요하다. 이 논문에서는 위성 시계 이상 발생 시 이를 실시간으로 감지할 수 있도록 한국항공우주연구에서 구축한 실시간 위성 시계 이상 감지 시스템에 대해 소개하고자 한다. 시스템 구현을 위해 적용한 방법은 크게 세 단계로 나뉠 수 있다. 첫 번째, 실시간으로 수신한 GPS 이중 주파수 측정치로부터 반송파 스무딩 필터를 적용하여 위성 시계 바이어스를 추정한다. 두 번째, 위성 위치 및 시계 정보의 실시간 적용을 위해 항법력보다 성능이 뛰어난 IGS Ultra-rapid 예측 정보를 활용한다. 마지막으로 위성시계 바이어스 추정치와 예측치를 비교하여 시계 이상 유무를 판별한다. 실제 위성 시계 이상이 발생한 위성의 측정치를 적용하여 시스템에 대한 검증시험을 수행하였고, 10 나노 초 수준의 위성 시계도약 현상이 발생한 위성의 감지를 통해 시스템의 성능을 확인하였다. 이는 항공항법분야와 같이 고성능의 위치 정보를 요구하는 응용분야에 신뢰성 있는 위성 정보 제공을 위해 활용될 수 있다.

  • PDF

Anomaly Detection System for Cloud Resources Using Representation Learning-Based Deep Learning Models (표현 학습 기반의 딥러닝 모델을 활용한 클라우드 자원 이상 감지 시스템)

  • Min-Yeong Lee;Heon-Chang Yu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.658-661
    • /
    • 2024
  • 퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.

P형 화재감지시스템과 퍼지논리를 적용한 화재감지시스템의 동작특성 비교분석

  • 홍성호;심두현;김상철
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.173-178
    • /
    • 2003
  • 화재감지시스템은 화재로부터 발생하는 열과 연기 등을 감지하여 화재발생을 조기에 관계자에게 경보하여 주는 시스템이다. 현재 이러한 화재감지시스템은 일정 규모 이상의 건축물에 필수적으로 설치되어 있으며 이 시스템으로 많은 인명과 재산이 보호되고 있다. 그러나 현재 설비되고 있는 화재감지시스템은 화재 시에 발생되는 열, 연기 등에 대하여 감지기회로에서의 미리 지정한 고정값과의 비교를 통하여 정해진 기준을 넘을 경우 화재로 판정한다. 그러나 고정값을 기준으로 신호를 발신하게 되어있는 화재감지기의 동작은 상황에 따라 불확실한 경우가 발생한다.(중략)

  • PDF

Edge Computing based Escalator Anomaly Detection and Defect Classification using Machine Learning (머신러닝을 활용한 Edge 컴퓨팅 기반 에스컬레이터 이상 감지 및 결함 분류 시스템)

  • Lee, Se-Hoon;Kim, Ji-Tae;Lee, Tae-Hyeong;Kim, Han-Sol;Jung, Chan-Young;Park, Sang-Hyun;Kim, Pung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.13-14
    • /
    • 2020
  • 본 논문에서는 엣지 컴퓨팅 환경에서 머신러닝을 활용해 에스컬레이터 이상 감지 및 결함 분류를 하는 연구를 진행하였다. 엣지 컴퓨팅 기반 머신러닝을 사용해 에스컬레이터의 이상 감지 및 결함 분류를 위한 OneM2M환경을 구축하였으며 에스컬레이터에서 발생하는 소음에서 고장 유형에 따라 나타나는 주파수를 이용한다. Edge TPU를 활용해 엣지 컴퓨팅 시스템의 처리량을 최대화하고, 각 작업의 수행시간을 최소화함으로써 엣지 컴퓨팅 환경에서 이상 감지와 결함 분류를 수행할 수 있다.

  • PDF

Anomaly detection in blade pitch systems of floating wind turbines using LSTM-Autoencoder (LSTM-Autoencoder를 이용한 부유식 풍력터빈 블레이드 피치 시스템의 이상징후 감지)

  • Seongpil Cho
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-52
    • /
    • 2024
  • This paper presents an anomaly detection system that uses an LSTM-Autoencoder model to identify early-stage anomalies in the blade pitch system of floating wind turbines. The sensor data used in power plant monitoring systems is primarily composed of multivariate time-series data for each component. Comprising two unidirectional LSTM networks, the system skillfully uncovers long-term dependencies hidden within sequential time-series data. The autoencoder mechanism, learning solely from normal state data, effectively classifies abnormal states. Thus, by integrating these two networks, the system can proficiently detect anomalies. To confirm the effectiveness of the proposed framework, a real multivariate time-series dataset collected from a wind turbine model was employed. The LSTM-autoencoder model showed robust performance, achieving high classification accuracy.

Development of Voice Signal Detection System using FPGA (FPGA를 이용한 음성 신호 감지 시스템 개발)

  • Kim, Jang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.141-146
    • /
    • 2015
  • In order to classify and analyze variously compounded sound and voice signal from FPGA microphone, there are numerous systems to detect abnormality signal, however, they have a lot of problems to implement the abnormality signal detection efficiently and effectively. Therefore, we proposed a method that implements classifying the signal effectively and outputting the detection efficiently based on the algorithm applied FIFO structure (First-in First-out) by using microphone sensor which able to input the sound signal, and statistical variance and coefficient of variation (CV). The result showed 96.3% detection when the experiment was performed more than 100 times with the proposed algorithm applied system.

Model Development of Event Detection System Software in Water Distribution Networks (상수관망 수리이상감지시스템 SW(K-EDS) 모델 개발)

  • Noh, Joon Woo;Shin, Eun Her;Yoo, Do Guen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.270-270
    • /
    • 2017
  • 스마트워터그리드와 같은 첨단 정보통신기술을 활용한 물 관리 기술의 도입으로 수도운영사업에서도 누수와 같은 이상사건인지 목적의 효율적 빅 데이터 분석기법의 중요성이 증대되고 있다. 국내외적으로 누수인지를 위한 다양한 연구기법, 범위, 계측항목, 샘플링 주기 등이 제시된 바 있으나, 이상감지시스템(Event Detection System, EDS)은 대상지역 특정적 특성을 가지고 있어 범용적인 모델을 구축하는 데는 어려움이 있다. 본 연구에서는 소블럭 단위의 유량자료 분석을 통한 이상감지시스템의 적용가능여부를 판별하고 적합 모델구축자료 방안을 제시하는 K-EDS 모델을 개발하였다. 모델분석의 절차는 자료획득, 자료 전처리, 탐색적 자료해석, 그리고 각 기법 평가로 진행된다. 개발된 모델을 다양한 특성을 가지는 실제 지방상수도시스템에 적용하여 분석하였으며, 최종적으로 모델적용 가능성과 영향인자 등을 도출하였다. 개발된 모델은 소블럭별 현장계측자료 기반의 이상감지모델 적용 적합도 판별에 활용될 수 있으며, 향후 누수 인지 및 누수지속시간 감소를 위한 SW로 개발이 가능하다.

  • PDF

Air conditioner anomaly detection and real-time monitoring using Convolution AutoEncoder (합성곱 AutoEncoder를 이용한 공기조화기 이상 감지와 실시간 모니터링)

  • Lee, Se-hoon;Kim, Min-Ji;Im, Yu-Jin;Cho, Bi-gun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.5-6
    • /
    • 2021
  • 본 논문에서는 Semi-supervised Learning 방식의 이상감지 방법을 제안한다. 취득한 소음 데이터를 이미지화 시킨 후 Convolution AutoEncoder 학습 방법을 이용하여 모델을 학습한다. 고장 데이터와 정상 데이터 간의 데이터 불균형 문제가 대두되기 때문에 정상 데이터만을 활용한 이상감지는 실제 산업현장의 상황에 알맞게 사용할 수 있을 것이라 기대한다.

  • PDF

재해 예방용 이상열 감지시스템(CAN 열향)

  • Park, Yun-Seok
    • 방재와보험
    • /
    • s.115
    • /
    • pp.28-33
    • /
    • 2006
  • 공장이나 일반 건물에서 과전류 및 기열에 의해 절연물이 응용되고 유독 가스를 배출하여 화재의 초기 단계로 발전하는 경우가 많다. 이같은 사고를 예방하기 위한 향 검지기와 향 캡슐을 조합한 이상열 감지 시스템 'CAN 열향'의 원리 및 현장 적용 예를 알아본다.

  • PDF

Anomaly Detection of Video Wall Controller Using Discretized Logistic Mixture Distribution (이산화 된 로지스틱 혼합 분포를 이용한 비디오 월 컨트롤러의 이상 감지)

  • Kim, Sung-jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.552-554
    • /
    • 2021
  • 프리징은 컴퓨터 시스템에서 하나의 프로세스나 시스템 전체가 입력에 대한 응답이 중단되고 제어가 불가능한 상태가 되는 현상이다. 비디오 월 컨트롤러의 제어 시스템도 OS에서 동작하는 애플리케이션이므로 프리징이 발생할 수 있지만, 운영자가 멀티 스크린을 실시간으로 모니터링 하고 있더라도 프리징의 발생을 인지하기 어렵고, 프리징을 인지하였을 때는 이미 제어가 불가능한 상태이므로 비디오 월 컨트롤러를 재부팅 하는 것 외에는 대응할 수 있는 방법이 없다. 따라서 본 논문에서는 비디오 월 컨트롤러의 이상 여부를 감지하여 프리징을 방지할 수 있는 모델을 제안한다. 이상 감지모델은 이산화 된 로지스틱 혼합 분포의 우도 함수를 이용하여 비디오 월 컨트롤러의 이상 여부를 감지한다.