• Title/Summary/Keyword: 이상치 데이터

Search Result 457, Processing Time 0.035 seconds

XAI(Explainable AI) 기법을 이용한 선박기관 이상탐지 시스템 개발

  • Habtemariam Duguma Yeshitla;Agung Nugraha;Antariksa Gian
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.289-290
    • /
    • 2022
  • 본 연구에서는 선박의 중요부품인 메인엔진에서 수집되는 센서 데이터를 사용하여 선박 메인엔진의 이상치를 탐지하는 시스템을 소개한다. 본 시스템의 특장점은 이상치 탐지 뿐만 아니라, 이상치의 센서별 기여도를 정량화 함으로써, 이상치 발생을 유형화 하고 추가적인 분석을 가능하게 해준다. 또한 웹 인터페이스 형태의 편리한 UI를 개발하여 사용자들이 보다 편리하게 이상치

  • PDF

Outlier Data Clustering using Factor Score (인자 점수를 이용한 이상치 데이터의 군집화)

  • 전성해;임민택;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.77-80
    • /
    • 2002
  • 이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.

  • PDF

An Outlier Data Analysis using Support Vector Regression (Support Vector Regression을 이용한 이상치 데이터분석)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.876-880
    • /
    • 2008
  • Outliers are the observations which are very larger or smaller than most observations in the given data set. These are shown by some sources. The result of the analysis with outliers may be depended on them. In general, we do data analysis after removing outliers. But, in data mining applications such as fraud detection and intrusion detection, outliers are included in training data because they have crucial information. In regression models, simple and multiple regression models need to eliminate outliers from given training data by standadized and studentized residuals to construct good model. In this paper, we use support vector regression(SVR) based on statistical teaming theory to analyze data with outliers in regression. We verify the improved performance of our work by the experiment using synthetic data sets.

Outlier Detection By Clustering-Based Ensemble Model Construction (클러스터링 기반 앙상블 모델 구성을 이용한 이상치 탐지)

  • Park, Cheong Hee;Kim, Taegong;Kim, Jiil;Choi, Semok;Lee, Gyeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.435-442
    • /
    • 2018
  • Outlier detection means to detect data samples that deviate significantly from the distribution of normal data. Most outlier detection methods calculate an outlier score that indicates the extent to which a data sample is out of normal state and determine it to be an outlier when its outlier score is above a given threshold. However, since the range of an outlier score is different for each data and the outliers exist at a smaller ratio than the normal data, it is very difficult to determine the threshold value for an outlier score. Further, in an actual situation, it is not easy to acquire data including a sufficient amount of outliers available for learning. In this paper, we propose a clustering-based outlier detection method by constructing a model representing a normal data region using only normal data and performing binary classification of outliers and normal data for new data samples. Then, by dividing the given normal data into chunks, and constructing a clustering model for each chunk, we expand it to the ensemble method combining the decision by the models and apply it to the streaming data with dynamic changes. Experimental results using real data and artificial data show high performance of the proposed method.

Outlier Detection in Time Series Monitoring Datasets using Rule Based and Correlation Analysis Method (규칙기반 및 상관분석 방법을 이용한 시계열 계측 데이터의 이상치 판정)

  • Jeon, Jesung;Koo, Jakap;Park, Changmok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.43-53
    • /
    • 2015
  • In this study, detection methods of outlier in various monitoring data that fit into big data category were developed and outlier detections were conducted for both artificial data and real field monitoring data. Rule-based methods applied rate of change and probability of error for monitoring data are effective to detect a large-scale short faults and constant faults having no change within a certain period. There are however, problems with misjudgement that consider the normal data with a large scale variation as outlier caused by using independent single dataset. Rule-based methods for noise faults detection have a limit to application of real monitoring data due to the problem with a choice of proper window size of data and finding of threshold for outlier judgment. A correlation analysis among different two datasets were very effective to detect localized outlier and abnormal variation for short and long-term monitoring dataset if reasonable range of training data could be selected.

Development of Integrated Outlier Analysis System for Construction Monitoring Data (건설 계측 데이터에 대한 통합 이상치 분석 시스템 개발)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.5-11
    • /
    • 2020
  • Outliers detection and elimination included in field monitoring datum are essential for effective foundation of unusual movement, long and short range forecast of stability and future behavior to various structures. Integrated outlier analysis system for assessing long term time series data was developed in this study. Outlier analysis could be conducted in two step of primary analysis targeted at single dataset and second multi datasets analysis using synthesis value. Integrated outlier analysis system presents basic information for evaluating stability and predicting movement of structure combined with real-time safety management platform. Field application results showed increased correlation between synthesis value including similar sort of sensor showing constant trend and each single dataset. Various monitoring data in case of showing different trend can be used to analyse outlier through correlation-weighted value.

Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings (LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.48-56
    • /
    • 2024
  • In the livestock industry, detecting environmental outliers and predicting data are crucial tasks. Outliers in livestock environment data, typically gathered through time-series methods, can signal rapid changes in the environment and potential unexpected epidemics. Prompt detection and response to these outliers are essential to minimize stress in livestock and reduce economic losses for farmers by early detection of epidemic conditions. This study employs two methods to experiment and compare performances in setting thresholds that define outliers in livestock environment data outlier detection. The first method is an outlier detection using Mean Squared Error (MSE), and the second is an outlier detection using a Dynamic Threshold, which analyzes variability against the average value of previous data to identify outliers. The MSE-based method demonstrated a 94.98% accuracy rate, while the Dynamic Threshold method, which uses standard deviation, showed superior performance with 99.66% accuracy.

Distributed Processing Environment for Outlier Removal to Analyze Big Data (대용량 데이터 분석을 위한 이상치 제거용 분산처리 환경)

  • Hong, Yejin;Na, Eunhee;Jung, Yonghwan;Kim, Yangwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.73-74
    • /
    • 2016
  • IoT 데이터는 비정형 데이터로 가공되고 분석하였을 때 비로소 가치를 갖기에 전 세계적으로 빅데이터 기술에 관심이 집중되고 있다. IoT 데이터 중 많은 부분을 차치하는 센서 데이터는 수집이 용이하고 활용범위가 넓기 때문에 여러 분야에서 사용되고 있다. 하지만 센서가 정상적으로 작동하지 못한 경우에는 실제와는 다른 값인 이상치를 포함하여 왜곡된 결과가 도출되어 활용할 수 없는 경우가 생긴다. 따라서 본 논문에서는 정확한 결과를 도출하기 위하여 수집된 원자료의 데이터를 분석하기 전에 이상치 탐지 및 제거를 하고자 한다. 또한 점점 늘어나고 있는 대용량 데이터를 신속하게 처리하기 위하여 메모리 접근방식인 스파크를 사용한 분산처리환경에서 이상치 탐지 및 제거하는 것을 제안한다. 맵리듀스 기반의 이상치 탐지 및 제거는 총 4단계로 나누어 구현하였으며 제안한 기법의 성능 평가를 위해 총 3가지 환경에서 비교하여 실험하였다. 실험을 통해 데이터의 용량이 커질수록 분산처리환경에서 스파크를 사용하여 처리하는 방식이 가장 빠를 것 이라는 결과를 얻었다.

  • PDF

Outlier Analysis of Learner's Learning Behaviors Data using k-NN Method (k-NN 기법을 이용한 학습자의 학습 행위 데이터의 이상치 분석)

  • Yoon, Tae-Bok;Jung, Young-Mo;Lee, Jee-Hyong;Cha, Hyun-Jin;Park, Seon-Hee;Kim, Yong-Se
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.524-529
    • /
    • 2007
  • 지능형 학습 시스템은 학습자의 학습 과정에서 수집된 데이터를 분석하여 학습자에게 맞는 전략을 세우고 적합한 서비스를 제공하는 시스템이다. 학습자에게 적합한 서비스를 위해서는 학습자 모델링 작업이 우선시 되며, 이 모델 생성을 위해서 학습자의 학습 과정에서 발생한 데이터를 수집하고 분석하게 된다. 하지만, 수집된 데이터가 학습자의 일관되지 못한 행위나 비예측 학습 성향을 포함하고 있다면, 생성된 모델을 신뢰하기 어렵다. 본 논문에서는 학습자에게서 수집된 데이터를 거리기반 이상치 선별 방법인 k-NN을 이용하여 이상치를 선별한다. 실험에서는 홈 인테리어 컨텐츠 기반에 학습자의 학습 행위에 대한 학습 성향을 진단하기 위한 DOLLS-HI를 이용하여, 수집된 학습자의 데이터에서 이상치를 분류하고 학습 성향 진단을 위한 모델을 생성하였다. 생성된 모델은 이상치 분류전과 비교하여 신뢰가 향상된 것을 확인하였다.

  • PDF

Performance Evaluation of Battery Remaining Time Estimation Methods According to Outlier Data Processing Policies in Mobile Devices (모바일 기기에서 이상치 데이터 처리 정책에 따른 배터리 잔여 시간 예측 기법의 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1078-1090
    • /
    • 2022
  • The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.