Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.431-433
/
2021
In this paper, abnormal behavior monitoring system using YOLO AI platform was implemented and had superior response characteristics compared to the conventional monitoring system using two-shot detection by using one-shot detection of YOLO system. The YOLO platform was trained using image dataset composed of abnormal behaviors such as assault, theft, and arson. The abnormal behavior monitoring system consists of client and server and can be applicable to smart cities to solve various crime problems if it is commercialized.
Proceedings of the Korean Society of Computer Information Conference
/
2020.01a
/
pp.7-9
/
2020
기존 CCTV 비디오에서 딥러닝 기반의 이상 탐지 연구는 객체의 행동 값만을 이용하여 이상을 탐지하였기 때문에, 시간 흐름에 따른 정보가 축소되는 문제점이 있었다. 그러나 CCTV 비디오에서의 이상의 원인은 다양한 요소와 시계열 분석에 따른 정보로 이루어져 있어 시간 정보를 유지하면서 다양한 특징 값을 사용한 모델을 설계할 필요가 있다. 따라서 본 논문에서는 C3D에 광학 흐름을 결합한 새로운 앙상블 모델을 제안한다. 실험 결과 본 논문에서 제안하는 모델이 75.83의 AUC를 얻어 기존에 연구되었던 행동 값만을 사용한 모델보다 높은 정확도를 달성하였다. 또한 이상 탐지 모델 설계 시 객체의 행동에 다양한 측면을 고려할 수 있는 여러 특징 값과 시계열 분석에 따른 정보를 사용하는 것이 적절하다는 결론을 도출하였다.
리튬이온 배터리를 고온의 환경에서 장시간 운용함에 따라 배터리 내부 물질의 변형 및 특성 변화가 발생하여 안전성의 문제가 발생하게 된다. 배터리의 안전성을 향상하기 위해 배터리의 고장 및 이상 상태를 진단 및 탐지하는 기법들의 연구가 진행되고 있다. 본 논문에서는 배터리의 이상 상황을 모사하기 위해 열폭주의 한 가지 방법인 고온의 환경에서 배터리의 특성 변화를 전기화학적 임피던스 분광법을 통해 분석하였으며, 등가회로 모델의 특성 인자를 활용하여 이상 상황을 탐지할 수 있는 이동 평균 추세선 기반의 이상 탐지 기법을 제안하며, 열폭주가 발생한 데이터를 통해 이상 탐지 기법을 검증한다.
공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.
4차 산업혁명의 발달로 스마트공장 기술이 발달하면서, 딥 러닝을 활용한 공정 과정에서 나타나는 이상을 탐지하는 기술이 활발히 연구되고 있다. 하지만 공정 과정에서 발생하는 휘발성유기화합물(VOCs) 저감 설비에서 발생하는 이상을 탐지하기 위한 연구는 적극적으로 진행되고 있지 않다. 따라서 본 논문에서는 딥 러닝 기술을 이용하여 VOCs 저감설비에서 발생하는 이상을 탐지하고, 설명가능 인공지능(XAI)을 활용하여 이상에 큰 영향을 미치는 주요 설비를 특정하여 이상 발생 시 관리자가 용이하게 설비들을 관리할 수 있도록 하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.290-291
/
2023
Outlier(이상치) 분석을 통한 등부표 선회안전반경 정보 제공에 관한 연구는 AIS 또는 RTU가 설치된 등부표에 대한 이탈 위험 인지, 항해안전 사고 예방 등 안전대책을 강화하기 위한 연구이다. 등부표는 조류, 바람 등 외력에 의해 이출거리가 발생하여 일정한 패턴으로 선회반경이 형성되나 외력으로 인하여 정상범위에서 벗어나 유실, 위치이동 등이 발생할 수 있고 이는 선박추돌 등 항해안전 사고로도 이어질 수 있다. 이러한 등부표 사고는 물적 피해비용과 이용자의 안전운항에 대한 심리적 부담감 또는 위험감수 등의 추가적인 행정소요 비용이 발생할 수 있다. Outlier(이상치)란 외력 등으로 인해 최대 이출거리 이내 정상범위에서 벗어나거나 존재할 수 없는 극단적인 위치 값으로써 21년도 등부표 위치 데이터를 일정 단위 방위별로 분석해 본 결과 Outlier(이상치)가 식별되었다. 따라서 등부표의 안전한 위치 상태를 시스템적으로 모니터링 하기 위해 Outlier(이상치) 분석을 통한 등부표 선회안전반경 정보 제공에 관한 연구를 하였다.
신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.
Hwang, Dae Hwan;Sin, Kyoung Mi;Choi, Kyong Min;Choi, Jae Young;Sul, Jun Hee;Kim, Dong Soo
Clinical and Experimental Pediatrics
/
v.48
no.4
/
pp.416-424
/
2005
Purpose : To find the risk factors associated with coronory artery lesions, non-responsiveness to intravenous immunoglobulin(IVIG) treatment, and recurrences in Kawasaki disease patients. Methods : We retrospectively analyzed 1,000 Kawasaki disease patients who were admitted to Yonsei University Medical Center from September 1990 to December 2003. We compared between responder and non-responder groups to IVIG treatment as well as between relapsed and non-relapsed groups, and as to the relapsed group, we also compared variables between patients in their first and second attack states. Finally, factors associated with longer-fever duration from disease onset were evaluated. Results : Longer fever durations before and after IVIG treatment, male sex, lower Hgb and Hct level, higher WBC count and segmented WBC proportion, and higher CRP and Harada's score were related with coronary artery lesions. Non-responsiveness was related to higher WBC count, segmented WBC proportion, CRP, SGPT, Harada's score, and pyuria. Moderate-to-severe coronary artery dilatations and recurrences were more commonly seen among the non-responder group. No significant predictive factors for recurrence were found. In the relapsed group, lower WBC count, CRP, and shorter fever duration from disease onset were observed in their second attack state. Fever duration from disease onset showed positive correlation with WBC count, CRP, and Harada's score and negative correlation with Hgb levels. Conclusion : Higher WBC count, CRP, and higher Harada's score were related to both higher incidences of coronary artery lesions and non-responsiveness to IVIG treatment, and these factors were also related with longer fever duration. Non-responders to IVIG treatment showed higher recurrence rate and more moderate-to-severe coronary artery dilatations than responders.
Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
Journal of KIISE:Information Networking
/
v.33
no.3
/
pp.201-217
/
2006
In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.