• Title/Summary/Keyword: 이상거래탐지시스템

Search Result 36, Processing Time 0.03 seconds

A Study on Implementation of Fraud Detection System (FDS) Applying BigData Platform (빅데이터 기술을 활용한 이상금융거래 탐지시스템 구축 연구)

  • Kang, Jae-Goo;Lee, Ji-Yean;You, Yen-Yoo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.19-24
    • /
    • 2017
  • The growing number of electronic financial transactions (e-banking) has entailed the rapid increase in security threats such as extortion and falsification of financial transaction data. Against such background, rigid security and countermeasures to hedge against such problems have risen as urgent tasks. Thus, this study aims to implement an improved case model by applying the Fraud Detection System (hereinafter, FDS) in a financial corporation 'A' using big data technique (e.g. the function to collect/store various types of typical/atypical financial transaction event data in real time regarding the external intrusion, outflow of internal data, and fraud financial transactions). As a result, There was reduction effect in terms of previous scenario detection target by minimizing false alarm via advanced scenario analysis. And further suggest the future direction of the enhanced FDS.

GPS를 적용한 이상금융거래탐지시스템 모델

  • Lee, Min-Gyu;Son, Hyo-Jeong;Seong, Baek-Min;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.219-221
    • /
    • 2015
  • 스마트폰의 확산으로 금융관련 결제는 어디서나 가능하게 되었기에 편리함이 증가하였다. 하지만, 위와 같은 편리함과 동시에 사용자의 단말이 해커의 공격에 취약하거나 분실할 경우 심각한 문제가 된다. 따라서, 위와 같은 부정행위가 있을 경우 이를 자동으로 탐지하는 시스템이 필요하다. 그러므로, 본 논문은 이러한 문제점을 고려하여 스마트폰을 이용한 금융업무를 처리할때 GPS정보를 적용한 이상금융거래탐지시스템(Fraud Detection System) 모델을 제안한다.

  • PDF

Fraud Detection System Model Using Generative Adversarial Networks and Deep Learning (생성적 적대 신경망과 딥러닝을 활용한 이상거래탐지 시스템 모형)

  • Ye Won Kim;Ye Lim Yu;Hong Yong Choi
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.59-72
    • /
    • 2020
  • Artificial Intelligence is establishing itself as a familiar tool from an intractable concept. In this trend, financial sector is also looking to improve the problem of existing system which includes Fraud Detection System (FDS). It is being difficult to detect sophisticated cyber financial fraud using original rule-based FDS. This is because diversification of payment environment and increasing number of electronic financial transactions has been emerged. In order to overcome present FDS, this paper suggests 3 types of artificial intelligence models, Generative Adversarial Network (GAN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). GAN proves how data imbalance problem can be developed while DNN and CNN show how abnormal financial trading patterns can be precisely detected. In conclusion, among the experiments on this paper, WGAN has the highest improvement effects on data imbalance problem. DNN model reflects more effects on fraud classification comparatively.

A Study of Accident Prevention Effect through Anomaly Analysis in E-Banking (전자금융거래 이상징후 분석을 통한 사고예방 효과성에 관한 연구)

  • Park, Eun Young;Yoon, Ji Won
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.119-134
    • /
    • 2014
  • Financial companies are providing electronic financial transactions through a variety of user terminals for non-face-to-face services such as Internet banking, smart phone banking, or etc. However, in these services users' security awareness and the limitations of technical responses has frequently caused the financial loss so that fundamental protection measures are required from financial authorities. Accordingly, financial industry is planning and establishing systems that block unusual financial transactions by comprehensively analyzing and detecting user's electronic information, access information, transaction information, and so on in accordance with "Guide for building Unusual financial transactions detection system" to prevent the financial loss that happens in electronic financial transactions. In this paper, we analyze case studies of unusual financial transactions detection and prevention system that is built and operated in financial companies and current operating status and propose effects of the accident prevention and security measures later.

LSTM-based fraud detection system framework using real-time data resampling techniques (실시간 리샘플링 기법을 활용한 LSTM 기반의 사기 거래 탐지 시스템)

  • Seo-Yi Kim;Yeon-Ji Lee;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.505-508
    • /
    • 2024
  • 금융산업의 디지털 전환은 사용자에게 편리함을 제공하지만 기존에 존재하지 않던 보안상 취약점을 유발했다. 이러한 문제를 해결하기 위해 기계학습 기술을 적용한 사기 거래 탐지 시스템에 대한 연구가 활발하게 이루어지고 있다. 하지만 모델 학습 과정에서 발생하는 데이터 불균형 문제로 인해 오랜 시간이 소요되고 탐지 성능이 저하되는 문제가 있다. 본 논문에서는 실시간 데이터 오버 샘플링을 통해 이상 거래 탐지 시 데이터 불균형 문제를 해결하고 모델 학습 시간을 개선한 새로운 이상 거래 탐지 시스템(Fraud Detection System, FDS)을 제안한다. 본 논문에서 제안하는 SMOTE(Synthetic Minority Oversampling Technique)를 적용한 LSTM(Long-Short Term Memory) 알고리즘 기반의 FDS 프레임워크는 종래의 LSTM 알고리즘 기반의 FDS 모델과 비교했을 때, 데이터 사이즈가 96.5% 감소했으며, 정밀도, 재현율, F1-Score 가 34.81%, 11.14%, 22.51% 개선되었다.

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.

A Survey of Fraud Detection Research based on Transaction Analysis and Data Mining Technique (결제로그 분석 및 데이터 마이닝을 이용한 이상거래 탐지 연구 조사)

  • Jeong, Seong Hoon;Kim, Hana;Shin, Youngsang;Lee, Taejin;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1525-1540
    • /
    • 2015
  • Due to a rapid advancement in the electronic commerce technology, the payment method varies from cash to electronic settlement such as credit card, mobile payment and mobile application card. Therefore, financial fraud is increasing notably for a purpose of personal gain. In response, financial companies are building the FDS (Fraud Detection System) to protect consumers from fraudulent transactions. The one of the goals of FDS is identifying the fraudulent transaction with high accuracy by analyzing transaction data and personal information in real-time. Data mining techniques are providing great aid in financial accounting fraud detection, so it have been applied most extensively to provide primary solutions to the problems. In this paper, we try to provide an overview of the research on data mining based fraud detection. Also, we classify researches under few criteria such as data set, data mining algorithm and viewpoint of research.

A Design of Mobile Fitness Recommendation System Based on Data Sharing Mechanism (실시간 이상거래 탐지 기법에 관한 연구)

  • Jang, Ki-Man;Kim, Kyung-Hwan;Choi, Kwang-Nam;Kim, Chang-Su;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.763-765
    • /
    • 2015
  • The study is being conducted to ensure the transparency of research and development have identified the problems of the current system and improve the way out. Such a study about the subject that do not follow either outside the institutional system has a disadvantage compared to an unfulfilled. R & D in order to prevent the misuse and fraud enforcement shall detect abnormal transactions that occur from transactions between research institutions and credit card issuers in real time. In this paper, we propose a detection method for real-time transaction over. It is able to detect and respond fraudulent transactions that may occur in a variety of environments by adding the data obtained by the business rules to derive stopped making detection system.

  • PDF

Study on Intelligence (AI) Detection Model about Telecommunication Finance Fraud Accident (전기통신금융사기 사고에 대한 이상징후 지능화(AI) 탐지 모델 연구)

  • Jeong, Eui-seok;Lim, Jong-in
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.149-164
    • /
    • 2019
  • Digital Transformation and the Fourth Industrial Revolution, electronic financial services should be provided safely in accordance with rapidly changing technology changes in the times of change. However, telecommunication finance fraud (voice phishing) accidents are currently ongoing, and various efforts are being made to eradicate accidents such as legal amendment and improvement of policy system in order to cope with continuous increase, intelligence and advancement of accidents. In addition, financial institutions are trying to prevent fraudulent accidents by improving and upgrading the abnormal financial transaction detection system, but the results are not very clear. Despite these efforts, telecommunications and financial fraud incidents have evolved to evolve against countermeasures. In this paper, we propose an intelligent over - the - counter financial transaction system modeled through scenario - based Rule model and artificial intelligence algorithm to prevent financial transaction accidents by voice phishing. We propose an implementation model of artificial intelligence abnormal financial transaction detection system and an optimized countermeasure model that can block and respond to analysis and detection results.

A Study on the Institutional Limitations and Improvements for Electronic Financial Fraud Detection (전자금융 이상거래 분석 및 탐지의 법제도적 한계와 개선방향 연구)

  • Jeon, Geum-Yeon;Kim, In-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.255-264
    • /
    • 2016
  • Due to the development of information and communication technology, the great change on economics has grown and the biggest change is the e-commerce. With the methods of electronic financial frauds becoming advanced, reported phishing incidents have greatly increased. The Fraud Detection System(hereafter FDS) has taken effect to prevent electronic financial frauds, but economic losses still occurring. This Paper aims to analyze the financial environment, financial information technology environment, financial information technology security environment and some features of the institutional changes. In order to supplement the defect of FDS, it gives some recommendations for the improvement of the effective FDS Management System and information sharing on frauds with some public institution and a major consideration for collection or utilization of personal information.