• 제목/요약/키워드: 이산 particle swarm optimization

검색결과 6건 처리시간 0.009초

PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화 (Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation)

  • 송화창;고재환;최병욱
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.792-797
    • /
    • 2011
  • 본 논문은 배전망에서의 PV (photovoltaic) 발전 시스템의 최적 배치 문제를 이산 입자 군집 최적화 (DPSO, discrete particle swarm optimization)를 이용하여 해를 구할 때 DPSO에 포함되어야 하는 이산화 단계를 위한 하이브리드 이산화 기법의 적용에 대하여 논한다. 이를 위해 PSO 반복단계에서 목적 함수 값과 최적화 속도를 입력 파라미터로 하는 규칙 기반 전문가 시스템을 제안하고 이산 변수를 포함하여 표현되는 PV 시스템 배치 문제의 최적해를 구하는데 적용하였다. 다수준 이산화를 위하여 간단한 라운딩과 sigmoid 함수를 이용한 3단계 및 5단계 이산화 기법을 하이브리드 형태로 적용하였다. 규칙 기반 전문가 시스템을 적용하여 각 PSO 과정에서 적절한 이산화 기법을 선택함으로써 기존의 DPSO보다 좋은 성능의 최적화가 가능하도록 하였다.

다수의 값을 갖는 이산적 문제에 적용되는 Particle Swarm Optimization (Particle Swarm Optimizations to Solve Multi-Valued Discrete Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.63-70
    • /
    • 2013
  • Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.

시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과 (The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

개선된 이진 입자 군집 최적화 알고리즘을 적용한 픽셀 형태 주파수 선택적 표면의 효율적인 설계방안 연구 (Effective Design of Pixel-type Frequency Selective Surfaces using an Improved Binary Particle Swarm Optimization Algorithm)

  • 양대도;박찬선;육종관
    • 한국전자파학회논문지
    • /
    • 제30권4호
    • /
    • pp.261-269
    • /
    • 2019
  • 본 논문은 레이돔과 같은 다층구조의 주파수 선택적 표면(frequency selective surfaces: FSS)을 설계하는데, 편파나 입사각 등 다양한 고려사항에 대한 유연성을 갖는 픽셀 형태의 주파수 선택적 표면을 설계하는 것에 관한 것이다. 픽셀 형태의 FSS를 설계할 때 이산 공간 문제를 해결할 수 있는 다양한 방법 중 이진 입자 군집 최적화(binary particle swarm optimization: BPSO) 알고리즘은 FSS의 주기구조 패턴을 결정하는데 쉽게 적용 가능한 기술 중 하나이며, 따라서 향상된 BPSO 알고리즘을 통해 롤 오프 전파 투과특성을 갖는 FSS를 효율적으로 설계하는 기법을 제안하였다. 원하는 솔루션에 입자를 유도하기 위한 적합성 함수 설계에 대하여 수렴속도 문제를 해결하기 위해, '기울기'를 입력 변수로 한 적합성 함수를 적용할 경우 쉽게 원하는 전파특성을 갖는 FSS를 얻을 수 있었다.

고속활주선의 선형 최적화를 통한 저항성능 개선에 관한 연구 (A Study on Improvement in the Resistance Performance of Planing hulls by Hull Shape Optimization)

  • 김선범
    • 한국시뮬레이션학회논문지
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 2018
  • 본 연구에서는 선형의 기본 파라메타가 주어졌을 때, 선형 최적화를 통하여 고속으로 주행하는 활주선의 저항성능을 개선하는 기법을 제안하였다. 먼저 선행연구 된 활주선형을 기준 선형으로 채택한 뒤, 선형 변경지점을 정의해 설계변수로 하여 최적화 문제를 수립하였다. 계산 효율을 위하여 탐색공간을 이산화하고, 최적화 문제를 풀기위하여 DPSO(Discrete binary version of Particle Swarm Optimization) 알고리즘을 사용하였다. 최적화 수행 후 기준 선형과 수정 선형의 목적함수 출력의 비교를 수행하였고, 이를 통해 고속영역에서의 저항성능의 개선을 확인하였다.

다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화 (Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats)

  • 정원모;김명건;이산하;이상필;박춘신;손흥선
    • 한국항공우주학회지
    • /
    • 제50권6호
    • /
    • pp.385-391
    • /
    • 2022
  • 본 논문에서는 경사 하강법 기반의 경로 생성(GBPP)과 입자 군집 최적화(PSO)를 결합하여 3차원 공간에서 금지구역, 지형정보, 고정익 특성 등을 고려한 경로 생성 알고리즘을 제안한다. 기존의 GBPP 방법의 경우 빠르게 경로 생성이 가능하지만 초기 경로에 따라 지역적 최적 값에 빠져 안전하지 않은 경로가 생성될 수 있다. 유전 알고리즘(GA)과 PSO 등 생물학에서 영감을 받은 군집 지능 알고리즘들의 경우 다양한 경로들을 샘플링하여 지역적 최적 값 문제를 해결할 수 있다. 다만 무인기와 경로점 개수가 증가하여 최적 변수가 증가할 경우 군집 개수를 늘려야 하고 계산 시간이 크게 증가한다. 두 알고리즘 단점을 보완하고자 본 연구에서는 GBPP 입력 값인 초기경로를 수평, 수직 방향에 대한 변위 두 가지 변수로 정의하고 이를 PSO 변수로 정의하여 계층적 경로 최적화 알고리즘 HPSO를 제안한다. 제안한 알고리즘은 통용되는 비행 제어 컴퓨터(FCC)의 software-in-the-loop simulation(SILS)을 사용하여 고정익 무인기에 대한 사용 가능성을 검증하였다.