• Title/Summary/Keyword: 이산화탄소 플럭스

Search Result 55, Processing Time 0.025 seconds

Estimation of CO2 Net Atmospheric Flux in the Middle and Lower Nakdong River, and Influence Factors Analysis (낙동강 중하류에서 이산화탄소 순배출 플럭스 산정 및 영향인자 분석)

  • Lee, Eunju;Chung, Sewoong;Park, Hyungseok;Kim, Sungjin;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.316-331
    • /
    • 2019
  • Carbon dioxide($CO_2$) emission from rivers to the atmosphere is a key component in the global carbon cycle. Most of the rivers are supersaturated with $CO_2$. At a global scale, the amount of $CO_2$ emission from rivers is reported to be five-fold greater than that from lakes and reservoirs, but relevant data are rare in Korea. The objectives of this study is to estimate the $CO_2$ net atmospheric flux(NAF) from the upstream of Gangjeong-Goryeong Weir(GGW), Dalseong Weir(DSW), Hapcheon-Changnyeong Weir(HCW), and Changnyeong-Haman Weir(CHW) located in Nakdong River South Korea) using field and laboratory experiments and to apply data mining techniques to develop parsimonious prediction models that can be used to estimate $CO_2$ NAF with physical and water quality variables that can be collected easily. As a result, the study sites were all heterotrophic systems that often released $CO_2$ to the atmosphere, except when the algal photosynthesis was active.The median $CO_2$ NAF was minimum $391.5mg-CO_2/m^2$ day at GGW and maximum $1472.7mg-CO_2/m^2$ day at DSW. The $CO_2$ NAF showed a negative correlation with pH and Chl-a since the overgrowth of the algae consumed $CO_2$ in the water and increased the pH. As the parsimonious multiple regression model and random forest model developed, this study showed an excellent performance with the $Adj.R^2$ value higher than 0.77 in all weirs. Thus, these methods can be used to estimate $CO_2$ NAF in the river even if there is no $pCO_2$ measurement data.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.

Evaluation of Basin-Specific CH4 emission flux from Intertidal Flat Sediments of Sogeun-ri, Taean, Mid-west Korea (한국 서해안 태안 소근리 갯벌의 메탄가스 발생량 특성)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Lee, Dong-Hun;Jang, Seok;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.281-291
    • /
    • 2014
  • In March to August 2013, the emission of gases ($CH_4$, VOC, $CO_2$, $O_2$, and LEL) was measured three times from the intertidal flat sediments at Sogeun-ri, Taean-gun, in the Mid-western seashore of Korea by using chamber method. After analyzing gas emission concentrations inside of flux enclosure chamber by using a GC equipped with Agilent 6890. The gas emission fluxes were calculated from a linear regression of the changes in the concentrations with time. The ranges of gas flux during the experimental period were $+0.06{\sim}+0.60mg/m^2/hr$ for $CH_4$, $+58.45{\sim}+95.58mg/m^2/hr$ for $CO_2$, $-0.02{\sim}-0.20mg/m^2/hr$ for $O_2$, and $-0.60{\sim}+0.65mg/m^2/hr$ for VOC, respectively. The flux measurement results revealed that $CH_4$ fluxes during March in the relatively low sediment temperature ($14.5^{\circ}C$) were significantly higher ($+0.60mg/m^2/hr$) than during June and August ($+0.06{\sim}+0.18mg/m^2/hr$) in high sediment temperature ($32.0{\sim}36.8^{\circ}C$). $CH_4$ flux to mean size of sediments and temperature of inner chamber exhibited strong positive correlation ($R^2=-0.97$ and $R^2=-0.89$, respectively).

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.