• Title/Summary/Keyword: 이산화탄소법

Search Result 353, Processing Time 0.025 seconds

A Study on the Right Direction of Green Standard for Energy and Environmental Design(G-SEED) from the Perspective of Landscape Architecture (조경관점의 녹색건축 인증기준에 대한 방향 정립)

  • Cha, Uk Jin;Nam, Jung Chil;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.45-56
    • /
    • 2016
  • In this study, an analysis has been conducted on the evaluation criteria of current G-SEED(Green Standard for Energy and Environmental Design) and on the 78 buildings, certified by G-SEED, for 3 years from November, 2012 to November, 2015. Based on the results of this analysis, four issues are driven and proposed hereinafter. Issue 1 : Nowadays, the psychological proportion of landscape architecture in building is getting greater than ever so that it shows reliable reduction of carbon dioxide. Therefore, so far as the eight kinds of buildings are concerned, the evaluation items of G-SEED must include those of landscape architecture mandatorily through its enlargement. Issue 2 : It is undesirable factor that inhibits precise evaluation on landscaping area to let other areas appraise landscape architecture because it requires outstanding professionalism. So, G-SEED should not only ensure landscaping professionalism for the correct evaluation but also let landscape area participate in assessing other areas. Issue 3 : Many previous researches turned out that landscape planting technique has excellent effect on saving energy and reducing temperature of buildings. Thus, landscape planting technique of landscape area is required to be one of the evaluation items of energy sector. Issue 4 : Tree management also has to be newly included as one of the evaluation factor for the maintenance relating to the landscape architecture. G-SEED, enacted and enforced by the Green Building Creation Support Act in 2013, surely is effective system to reduce carbon dioxide in buildings. This is a special Act in its nature that is superior to Construction Law and must be observed by all means to construct buildings. Under the umbrella of this legal system, various of researches and products are contributing to creating new jobs in construction area. However, it is a well-known fact that landscape architecture area has shown less interest on this Act than that of construction area. In conclusion, it is necessary that landscape industry should conduct continuous researches on G-SEED and pay more attention to the Act enough to harvest related products and enlarge its work area.

The Effects of Leukocyte Depleted Priming Solution on the Gastric Mucosal $Co_{2}$ Partial Pressure and Serum IL-8 Level during Cardiopulmonary Bypass in Korean Mongrel Dogs (한국산 잡견에서 백혈구 제거 충진액이 체외순환 중 위점막 이산화탄소 농도와 IL-8 수준에 미치는 영향)

  • Park Kuhn;Lee Jong Ho;Kim Jin Ho;Jin Ung;Kwon Jong Bum;Kim Chi Kyeong;Wang Young Pil
    • Journal of Chest Surgery
    • /
    • v.38 no.12 s.257
    • /
    • pp.807-814
    • /
    • 2005
  • Background: Cardiopulmonary bypass is an essential process to maintain circulation for saving life during the cardiac surgery, But it is a process in which systemic inflammation was evoked inevitably because of the exposure of blood to foreign surface. The injuries to distal organs during the cardiopulmonary bypass were resulted from systemic inflammation and the disturbances of micro-circulations in the organs. We designed this study to research the effects of leukocyte depletion from pump-oxygenator priming solution on the systemic inflammation, and the micro-circulation of gastric mucosa that is suggested by the gastric mucosal $CO_{2}$ partial pressure and acidity. Material and Method: The dogs were divided into three groups according to the different pump-oxygenator priming solutions; non-hemic crystalloid solution; leukocyte-depleted homologous blood; and non leukocyte-depleted homo-logous blood. Each priming solution group contained five dogs. In all three groups, 2 hours of cardiopulmonary bypass, and 4 consecutive hours of general anesthesia was maintained on the mechanical ventilation. Each dog was evaluated for the gastric mucosal pH, $CO_{2}$ partial Pressure, arterial pH, $CO_{2}$ partial pressure, the exhaled air $CO_{2}$ partial pressure and the level of IL-8 on before the cardiopulmonary bypass, 1 hour after the cardiopulmonary bypass, 2 hours after the cardiopulmonary bypass, 2 hours after the restoration of normal circulation, and 4 hours after the restoration of normal circulation after the cardiopulmonary bypass. The levels of IL-8 were measured with ELISA (enzyme linked immunosorbent assay) technique. Result: 1. There were significant differences of gastric mucosal $CO_{2}$ partial pressure between the leukocyte-depleted homologous blood group and other two groups(vs non leukocyte-depleted homologous blood group; P=0.02, vs non-hemic crystalloid solution group; P=0,01). 2. The gastric mucosal pH of leukocyte-depleted homologous blood group was significantly different from non leukocyte-depleted homologous blood group (p=0.01). 3. The levels of IL-8, which examine the systemic inflammation, showed signi- ficantly better results in leukocyte-depleted homologous blood group and non-hemic crystalloid solution group than non leukocyte-depleted homologous blood group (p=0.01, 0.01). Conclusion: Based upon these results, we concluded that the leukocyte depletion from the pump-oxygenator priming solution has a beneficial effects in reducing systemic inflammation and the preserving of gastric mucosal micro-circulation.

Blood Gas Management of a Membrane Oxygenator During Cardiac Surgery with Deep Hypothermic Circulatory Arrest (막형산화기에 의한 저체온 순환정지 심장수술시 혈액가스 조절)

  • Kim, W. G.;Lim, C.;Baek, Y. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.279-284
    • /
    • 1998
  • Deep hypothermic circulatory arrest(DHCA), in which systemic temperatures of 2$0^{\circ}C$ or less are used to allow temporary cessation of the circulation, is an useful adjunct in cardiac surgery. Because man in natural circumstances is never exposed to the extreme hypothermic condition, however, one of the controversial aspects is appropriate blood gas management($\alpha$STAT versus PH-STAT) during DHCA. This study aims to compare $\alpha$STAT with PH-STAT management for control of blood gases in experimental cardiopulmonary bypass(CPB) circuits with a membrane oxygenator. Fourteen young pigs were assigned to one of two strategies of gas manipulation. After a median sternotomy, CPB was established. Core cooling was initiated and continued until nasopharyngeal temperature fell below 2$0^{\circ}C$. The flow rate was set at 2,500 ml/min. Once their temperatures were below 2$0^{\circ}C$, the animals were subjected to circulatory arrest for 40mins. During cooling, blood gas was maintained according to either $\alpha$$\alpha$STAT or pH-STAT strategies. After DHCA, the body was rewarmed to normal body temperature. Arterial blood gases were measured before the onset of CPB, before cooling, before DHCA, at the point of 27$^{\circ}C$ during re-warming, on completion of re-warming. Cooling time was significantly shorter in $\alpha$-STAT than PH-STAT strategy, while there was no significant differences in rewarming time between two groups. Carbon dioxide was added between 5.5 and 3.0% in PH-STAT, while no carbon dioxide was added in $\alpha$STAT management. Amounts of oxygen administration were gradually lowered as temperature decreased. In this way, criteria of PH, PaCO, and PaO adjustments were satisfied in both $\alpha$STAT and PH-STAT management groups.

  • PDF

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

Diffusion Characteristics of Fatty Acid using Supercritical Fluid Chromatographic Method (초임계유체 크로마토그래피를 이용한 지방산의 확산특성 해석)

  • Lee, Seung Bum;Seong, Dae Hyung;Kim, Hyung Su;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1043-1052
    • /
    • 1996
  • Supercritical fluid chromatographic method was recommended as an alternative separation method of fatty acids of the conventional method such as distillation or extraction. Although diffusion characteristics are varied by the carbon numbers and the degree of unsaturation of fatty acids, the quantitative data were so rare that the commercialization of supercritical fluid chromatographic method has been hindered. In this study, diffusion coefficients of fatty acids which are differently unsaturated are measured by CPB method in the range of 308.15K to 328.15K and 13MPa to 17MPa in supercritical carbon dioxide. A decrease in the binary diffusion coefficient was observed with an increase in temperature and pressure. Also, the decrease in the binary diffusion coefficient with increasing fluid density and viscosity. Wilke-Chang equation, Funazukuri empirical equation, and Matthews-Akgerman equation are used to correlate the experimental diffusion coefficients of fatty acids in supercritical carbon dioxide. Among the various theoretical equations, Matthews-Akgerman equation based on RHS theory was suggested as a more successful correlation model with experimental data.

  • PDF

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

Separation of $CO_2$ from SynGas Using Gas Hydrate Formation (가스 하이드레이트 형성법을 이용한 합성가스로부터의 $CO_2$ 분리 및 회수)

  • Park, Sungmin;Lee, Seungmin;Lee, Youngjun;Kang, Boram;Seo, Yongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.154.1-154.1
    • /
    • 2010
  • 석탄가스화복합발전(IGCC)에서는 석탄을 가스화하여 얻어진 합성가스로부터 이산화탄소를 분리/회수하고 수소는 유용하게 사용할 수 있다. 이 기술의 핵심은 $H_2+CO_2$ (40%) 합성가스로부터 $CO_2$를 경제적이고 효과적으로 분리/회수하는 것이다. 본 연구에서는 합성가스로부터 $CO_2$를 효과적으로 분리/회수하기 위해 가스 하이드레이트 형성법을 제안하였다. 하이드레이트 형성 조건을 완화시켜 주기 위하여 열역학적 촉진제로서 TBAB, TBAF, THF를 첨가하여 열역학적 촉진 현상을 살펴보았다. 다양한 농도의 TBAB (10, 40, 60 wt%), TBAF (10, 34, 45 wt%), THF (4, 19, 31 wt%)에 대하여 3상 평형 (하이드레이트 (H) - 물 (LW) - 기상 (V))을 측정한 결과 40 wt%의 TBAB, 34 wt%의 TBAF, 19 wt%의 THF의 농도에서 가장 큰 촉진효과를 보였으며, 그 이상의 조성에서는 오히려 촉진효과가 줄어드는 것을 확인할 수 있었다. 순수계와 촉진제 첨가계에 대하여 하이드레이트 생성 후의 기상과 하이드레이트상의 $CO_2$ 조성을 측정하였다. 그 결과 모든 실험조건에서 하이드레이트상에 85% 이상의 높은 농도로 $CO_2$가 농축되는 것을 확인하였다. 이러한 과정을 반복하면 순도 99% 이상의 매우 높은 $CO_2$ 기체를 얻을 수 있다. 또한, 가스 하이드레이트 형성과정의 반응특성을 살펴보기 위하여 반응시간에 따른 기상의 $CO_2$ 농도변화를 측정하였다. 본 실험에서 얻어진 결과는 가스 하이드레이트 형성법을 이용한 합성가스 분리 공정 개발에 중요한 기초자료가 될 것으로 사료된다.

  • PDF

Optimization of Bio-Methane Gas Enrichment Process for City Gas Supply (도시가스용 바이오가스 메탄농축공정 최적화)

  • Ko, Sang-Wook;Lee, Kyung Jin;Moon, Myong Hwan;Baek, Ju Hong;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.76-83
    • /
    • 2017
  • Biogas, combine with ever-increasing natural gas demand, has been on the center stage in South Korea for the early part of twenty first century in an effort to reduce the emission of global warming gases. With the passage of legal system of City Gas Business Law in 2014, the biogas has its place of production and distribution to consumers. However, it has a room for its technological improvements in terms of enrichment, by separating carbon dioxide and removing impurities efficiently. For these improvements, four different methane enrichment processes were tested in this study; membrane separation, water absorption, Chemical Absorption and Adsorption. A variety of operation scenarios were applied to the processes and the best practices were drawn out. The optimum process was selected based on case study results. Methane produced in this study showed 97% purity and 98% recovery rate, which meets the requirements of the City Gas quality standards.

Historical Development of Nutrient and Calorimetry and Expired Gas Analysis Indirect Calorimetry (영양소와 열량측정법의 발달과정 및 간접 열량 측정법)

  • Yoon, Byung-Kon;Kim, Jong-Won;Kim, Do-Yeon
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1159-1165
    • /
    • 2010
  • Indirect calorimetry is the measurement of the amount of heat generated in an oxidation reaction by determining the intake or consumption of oxygen or by measuring the amount of carbon dioxide or nitrogen released and translating these quantities into a heat equivalent. In the last 20 years there has been significant development in both laboratory and computerized metabolic systems used in indirect calorimetry. In addition, there has been increased use of breath-by-breath EGAIC. Several researchers have suggested that breath-by-breath analysis, because of their practicality, could fulfill this need for a valid and reliable expired gas analysis indirect calorimetry instrument. It was hoped this investigation would determine the best validation for a precise measurement of breath-by-breath expired gas analysis indirect calorimetry. The problem with the available research is that few studies have examined the validity and reliability of all these different systems for breath-by-breath expired gas analysis indirect calorimetry. Therefore, there is a need to find out the most valid, reliable, and precise measurement of the breath-by-breath expired gas analysis indirect calorimetry.