DOI QR코드

DOI QR Code

Historical Development of Nutrient and Calorimetry and Expired Gas Analysis Indirect Calorimetry

영양소와 열량측정법의 발달과정 및 간접 열량 측정법

  • Yoon, Byung-Kon (Department of Special Physical Education, Dong-Eui University) ;
  • Kim, Jong-Won (Department of Physical Education, Pusan National University) ;
  • Kim, Do-Yeon (Department of Physical Education, Pusan National University)
  • 윤병곤 (동의대학교 특수체육학과) ;
  • 김종원 (부산대학교 체육교육과) ;
  • 김도연 (부산대학교 체육교육과)
  • Received : 2010.05.07
  • Accepted : 2010.06.15
  • Published : 2010.08.30

Abstract

Indirect calorimetry is the measurement of the amount of heat generated in an oxidation reaction by determining the intake or consumption of oxygen or by measuring the amount of carbon dioxide or nitrogen released and translating these quantities into a heat equivalent. In the last 20 years there has been significant development in both laboratory and computerized metabolic systems used in indirect calorimetry. In addition, there has been increased use of breath-by-breath EGAIC. Several researchers have suggested that breath-by-breath analysis, because of their practicality, could fulfill this need for a valid and reliable expired gas analysis indirect calorimetry instrument. It was hoped this investigation would determine the best validation for a precise measurement of breath-by-breath expired gas analysis indirect calorimetry. The problem with the available research is that few studies have examined the validity and reliability of all these different systems for breath-by-breath expired gas analysis indirect calorimetry. Therefore, there is a need to find out the most valid, reliable, and precise measurement of the breath-by-breath expired gas analysis indirect calorimetry.

간접 열량측정법은 호흡 시의 산소 소모량이나 이산화탄소나 질소의 배출량을 측정해 에너지 소모량을 측정하고, 산화작용의 열 방출량(칼로리소비)을 산출하여 측정한다. 지난 20년 내에 간접 열량측정법에서 사용된 laboratory와 computerized 시스템은 현저하게 발전되었으며, 특히 매 호흡의 변인의 산출을 가능하게 해주는 호흡당 시스템의 사용이 증가되었다. 많은 이전의 연구에서 호흡당 시스템은 간접 열량측정도구로 타당도와 신뢰도가 높아 실험에 적합하다고 평가 하였다. 본 연구는 간접 열량측정법의 가장 적합한 호흡당 시스템을 분석하고자 한다. 하지만 다른 모든 호흡당 간접열량측정계의 타당도와 신뢰도의 효과를 검증한 연구가 많지 않다는 문제점이 있다. 그러므로, 앞으로 연구에서는 호흡당 간접열량측정계의 가장 타당도와 신뢰도가 높은 적합한 측정도구가 필요하다고 사료된다.

Keywords

References

  1. Ainslie, P. N., T. Reilly, and K. R. Westerterp. 2003. Estimating human energy expenditure: a review of techniques with particular reference to doubly labeled water. Sports Medicine 33, 683-698. https://doi.org/10.2165/00007256-200333090-00004
  2. Barnard, J. P. M. and J. W. Sleigh. 1995. Breath-by-breath analysis of oxygen uptake using the Datex Ultima. British J. Anaesthesia 74, 155-158. https://doi.org/10.1093/bja/74.2.155
  3. Bassett, D. R. Jr, E. T. Howley, D. L. Thompson, G. A. King, S. Strath, J. E. McLanghlin, and B. P. Brian. 2001. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J. Appl. Physiol. 91, 218-224.
  4. Bassett, D. R. Jr, E. T. Howley, D. L. Thompson, G. A. King, S. Strath, J. E. McLanghlin, and B. P. Brian. 2001. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J. Appl. Physiol. 91, 218-224.
  5. Brandi, L. S., R. Bertolini, and M. Calafa. 1997. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition 13, 349-358.
  6. Brooks, G. A., T. D. Fahey, T. P. White, and K. M. Baldwin. 2000. Exercise physiology. 3rd Eds. Human Bioenergetics and its applications. Mountain View, CA: Mayfield Publishing Company.
  7. Carter, J., and A. E. Jeukendrup. 2002. Validity and reliability of three commercially available breath-by-breath respiratory systems. Eur. J. Appl. Physiol. 86, 435-441. https://doi.org/10.1007/s00421-001-0572-2
  8. Crouter, S. E., A. Antczak, J. R. Hudak, D. M. DellaValle, and J. D. Haas. 2006. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur. J. Appl. Physiol. 98, 139-151. https://doi.org/10.1007/s00421-006-0255-0
  9. Cullum, M. G., H. Welch, and J. W. Yates. 1999. Evaluation of an automated metabolic cart compared to Douglas bag measurement of $VO_{2}$. Med. Sci. Sports Exerc. 31, S302.
  10. Davies, E. E., H. L. Hahn, S. G. Spiro, and R. H. Edwards. 1974. New technique for recording respiratory transients at the start of exercise. Resp. Physiol. 20, 69-79. https://doi.org/10.1016/0034-5687(74)90019-X
  11. da Rocha, E. E., V. G. F. Alves, and R. B. V. da Fonseca. 2006. Indirect calorimetry: methodology, instruments and clinical application. Curr. Opin. Clin. Nutr. 9, 247-256. https://doi.org/10.1097/01.mco.0000222107.15548.f5
  12. Foss, O. and J. Hallen. 2005. Validity and stability of a computerized metabolic system with mixing chamber. Int. J. Sports Med. 26, 569-575. https://doi.org/10.1055/s-2004-821317
  13. Gore, C. J., P. G. Catcheside, S. N. French, J. M. Bennett, and J. Laforgia. 1997. Automated $VO_{2}$max calibrator for open-circuit indirect calorimetry systems. Med. Sci. Sports Exerc. 29, 1095-1103. https://doi.org/10.1097/00005768-199708000-00016
  14. Gore, C. J., R. J. Clark, N. J. Shipp, G. E. Van Der Ploeg, and R. T. Withers. 2003. CPX/D underestimates $VO_{2}$ in athletes compared with an automated Douglas bag system. Med. Sci. Sports Exerc. 35, 1341-1347. https://doi.org/10.1249/01.MSS.0000079045.86512.C5
  15. Hodges, L. D., D. A. Brodie, and P. D. Bromley. 2005. Validity and reliability of selected commercially available metabolic analyzer systems. Scand. J. Med. Sci. Sport 15, 271-279. https://doi.org/10.1111/j.1600-0838.2005.00477.x
  16. Huszczuk, A., B. J. Whipp, and K. A. Wasserman. 1990. Respiratory gas exchange simulator for routine calibration in metabolic studies. Eur. Respir. 3, 465-468.
  17. Katch, V. L., S. S. Sady, and P. Freedson. 1982. Biological variability in maximum aerobic power. Med. Sci. Sports Exerc. 14, 21-25. https://doi.org/10.1249/00005768-198201000-00004
  18. Lusk, G. 1909. The elements of the science of nutrition, 2nd ed. Philadelphia, PA: W. B. Saunders company.
  19. Macfarlane, D. J. 2001. Automated metabolic gas analysis systems. Sports. Med. 32, 841-861.
  20. Matarese, L. E. 1997. Indirect calorimetry: Technical aspects. J. Amer. Dietet. Assoc. 97(Suppl. 2), S154-S160. https://doi.org/10.1016/S0002-8223(97)00754-2
  21. McClave, S. A. and H. L. Snider. 1992. Use of indirect calorimetry in clinical nutrition. Nutr. Clin. Pract. 7, 207-221. https://doi.org/10.1177/0115426592007005207
  22. Meyer, T., T. Georg, C. Becker, and W. Kindermann. 2001. Reliability of gas exchange measurements from two different spiroergometry systems. Int. J. Sports Med. 22, 593-597. https://doi.org/10.1055/s-2001-18523
  23. Noguchi, H., Y. Ogushi, I. Yoshiya, N. Itakura, and H. Yamabayashi. 1982. Breath-by-breath $VCO_{2}$ and $VO_{2}$ require compensation for transport delay and dynamic response. J. Appl. Physiol. 52, 79-84.
  24. Pinnington, H. C., P. Wong, J. Tay, D. Green, and B. Dawson. 2001. The level of accuracy and agreement in measures of $F_{E}O_{2}$, $F_{E}CO_{2}$ and $V_{E}$ between the Cosmed K4b2 portable, respiratory gas analysis system and a metabolic cart. J. Sci. Med. Sport 4, 324-325. https://doi.org/10.1016/S1440-2440(01)80041-4
  25. Proctor, D. N. and K. C. Beck. 1996. Delay time adjustments to minimize errors in breath-by-breath measurement of $VO_{2}$ during exercise. J. Appl. Physiol. 81, 2495-2499.
  26. Reid, C. L. and G. L. Carlson. 1998. Indirect calorimetrya review of recent clinical applications. Curr. Opin. Clin. Nutr. 1, 281-286. https://doi.org/10.1097/00075197-199805000-00008
  27. Reybrouck, T., F. Deroost, and V. Hauwaert. 1992. Evaluation of breath-by-breath measurement of respiratory gas exchange in pediatric exercise testing. Chest 102, 147-152. https://doi.org/10.1378/chest.102.1.147
  28. Rietjens, C. J. W. M., H. Kuipers, A. D. M. Kester, and H. A. Keizer. 2001. Validation of a computerized metabolic measurement system (Oxycon-$Pro^{{\circledR}}$) during low and high intensity exercise. Int. J. Sports Med. 22, 291-294. https://doi.org/10.1055/s-2001-14342
  29. Robergs, R. A. and A. F. Burnett. 2003. Methods used to process data from indirect calorimetry and their application to $VO_{2}$max. J. Exerc. Physiol. Online 6, 44-57.
  30. Robergs, R. A. and S. J. Keteyian. 2003. Fundamentals of exercise physiology for fitness, performance, and health. 2nd eds. New York: McGraw-Hill.
  31. Robergs, R. A., and S. O. Roberts. 1997. Exercise Physiology: Exercise, performance, and clinical applications. St. Louis, MO: Mosby-Year Book, Inc.
  32. Rosenbaum, A., C. Kirby, and P. H. Breen. 2007. New metabolic lung simulator: development, description, and validation. J. Clin. Monitor. Comp. 21, 71-82. https://doi.org/10.1007/s10877-006-9058-4
  33. Storer, T. W., T. J. Bunnell, A. Hand, and S. Grant. 1995. Validation of a new metabolic measurement cart. Int. J. Sports Med. 16, 101.
  34. Wasserman, K., J. E. Hansen, D. Y. Sue, B. J. Whipp, and R. Casaburi. 1994. Principles of exercise testing and interpretation. 2nd Eds. Philadelphia, PA: Lea & Febiger.
  35. Wilmore, J. H. and D. L. Costill. 1974. Semi-automated systems approach to the assessment of oxygen uptake during exercise. J. Appl. Physiol. 36, 618-620.
  36. Yates, J. W. and M. G. Cullum. 2001. The validation of a metabolic cart without human subjects. Med. Sci. Sports Exerc. 33(Suppl. 5), S299.