• Title/Summary/Keyword: 이산화탄소배출

Search Result 794, Processing Time 0.021 seconds

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

A study on Economic Evaluation of the Theater Stage Lighting System Using LED (공연장 LED 조명시스템 구성의 경제성 평가에 관한 연구)

  • Lee, Kwong-Mo;An, Kyong-Sok;Gu, Seung-Hwan;Han, Hak-Soo;Choi, Sung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.43-53
    • /
    • 2015
  • This study analyzes economic feasibility of the LED lighting system compare to the halogen. To evaluate economic feasibility of the LED devices, we analyzed the size of theater, current value of the lighting devices in kinds, annual cost and annual cost according to the surface in case of designing stage lighting system with LED using WEELS 2011. Also, to compare energy consumption, we analyzed consumption and amount of electric energy by the surface and the amount of CO2 emission. Data showed that annual cost of the LED devices are highly inexpensive than halogen and now the value is of great. However initial cost of the equipment 200% higher than halogen. Though LED devices are expensive in startup setting, the value of utilization factor is large and depreciation years of LED(30years) are longer than halogen(2years). Therefore, annual cost of LED can make up the minus. Consider the tendency of reducing price of LED devices, we can assume that annual cost of the LED will be lower than halogen devices. Further, in 3years the expense of LED and halogen is reversed.

Estimation of Carbon Sequestration and Its Profit Analysis with Different Application Rates of Biochar during Corn Cultivation Periods (옥수수 재배기간 동안 바이오차 시용 수준에 따른 탄소 격리량 산정 및 이익 분석)

  • Shin, JoungDu;Choi, Yong-Su;Lee, SunIl
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.83-90
    • /
    • 2016
  • Despite the ability of biochar to enhance soil fertility and to mitigate greenhouse gas, its carbon sequestration and profit analysis with arable land application have been a few evaluated. This study was conducted to estimate carbon sequestration and to evaluate profit of greenhouse gas mitigation during corn cultivation periods. For the experiment, the biochar application rates were consisted of pig compost(non application), 2,600(0.2%), 13,000(1%), and 26,000(2%) kg/ha based on pig compost application. For predicting soil carbon sequestration of biochar application, it was appeared to be linear model of Y = 0.5523X - 742.57 ($r^2=0.939^{**}$). Based on this equation, soil carbon sequestration by 0.2, 1 and 2% biochar application was estimated to be 1,235, 3,978, and 14,794 kg/ha, and their mitigations of $CO_2$-eq. emissions were estimated to be 4.5, 14.6, and 54.2 ton/ha, respectively. Their profits were estimated at $14.6 for lowest and $452 for highest. In Korea Climate Exchange, it was estimated that the market price of $CO_2$ in corn cultivation periods with 0.2, 1 and 2% biochar application was $35.6, $115.3 and $428.2 per hectare, respectively. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.

A Study on the Direct connection Service Effectiveness in Gyeongbu(KTX) (경부선(KTX) 직결운행 도입 효과에 관한 연구)

  • Kim, Ik-Hui;Kim, Yeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.91-100
    • /
    • 2007
  • This study suggests direct connection service which has advantage of high-speed operation of KTX and access convenience of general train, and Pre-feasibility studies on the direct connection service. And analyze transportation demand change by the method as follows; It is to analyze the demand change of before and after KTX operation by previous transport data of Gyeongbu line, and calculate the coefficient of utilization using triggering demand by opening the 2nd phase of Gyeongbu line (Dongdaegu${\sim}$Busan). Through Pre-feasibility analysis, reduction $70{\sim}100$ minutes of train travel time and total revenue will increase about $100 thousand per day. Also, there will be environment-friendly effects of decreasing $CO_2$ emissions. But, Direct connection service need to highly cost ; Buying and Operation cost of KTX train. Therefore, we will be get more correct result of Pre-feasibility study on direct connection service, if there are concrete on buying the KTX action plans.

A Study on the Optimization of District Heating and Cooling Facilities (지역냉난방사업의 설비 최적화에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.505-530
    • /
    • 2006
  • For the district heating and cooling business, it is required to install energy-saving facilities using energy from waste and land fill gases such as combined heat and power(CHP). The current issues that this business faces can be summarized as below: which facilities including CHP can be economically introduced and how much of their capacities should be. Most of such issues are clearly related to the optimal plant design of the district heating and cooling business, and the prices of energy services such as heating and cooling energy, and electricity. The purpose of this study is to establish linear program model of least cost function and to practice the empirical test on a assumed district heating and cooling business area. The model could choose the optimal type of energy-producing facilities among various kinds available such as CHP's, absorption chillers, the ice-storage system, etc. CHP with the flexible heat and power ratio is also in the set of available technologies. And the model show us the optimal ration of heat producing facilities between CHP and historical heat only boiler in the service area. Some implications of this study are summarized as below. Firms may utilize this model as a tool for the analysis of their optimal size of the facilities and operation. Also, the government may refer the results to regulate resonable size of business.

  • PDF

A Comparison of Decomposition Analyses for Primary and Final Energy Consumption of Korea (우리나라 1차 에너지와 최종 에너지 소비 변화요인 분해 비교분석)

  • Park, Sungjun;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.305-330
    • /
    • 2014
  • There has been a lot of studies to identify the driving forces of energy consumption. Many of them decomposed the final energy consumption into the intensity effect, structural effect, and production effect. Those approach, however, could not consider the transformation loss during the electric power generation. Therefore, in this study, we conducted a decomposition analysis on the primary energy use basis to reflect that transformation loss. Log mean Divisia index and refined Laspeyres methods were used for the index decomposition. As results, we could find out that the difference between two approaches were definite. The intensity effect in 2011 is -0.607 times against 1981 in the final energy case, but -0.236 times in the primary energy case. The structure effect in 2011 is 0.227 times against 1981 in the final energy case, but 0.434 times in the primary energy case. Therefore, an analysis on the primary energy basis is essential when conducting a decomposition analysis.

Effect of Food Waste Direct Landfilling Prohibition on Characteristics of Landfill Gas and Leachate (음식물류폐기물 직매립금지가 매립지 가스 및 침출수 특성에 미치는 영향)

  • Ko, Jae-Young;Phae, Chae-Gun;Park, Joon-Seok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.612-617
    • /
    • 2007
  • This research was performed to evaluate the effect of 'Food Wastes (FW) Direct Landfilling Prohibition' on characteristics of landfill gas (LFG) and leachate and the appropriateness of current legislation. Approximately 45% (Exp.45) and 15% (Exp.15) of FW were filled in two lysimeters. During 570 days, 1400 L of LFG was generated from Exp.45%, which was much more than 906 L of Exp.15. There was no significant difference of LFG composition between Exp.15 and Exp.45. 2~30 ppmv of odorous hydrogen sulfide was detected in Exp.45, while 2~7 ppmv was in Exp.15. There was also no significant difference in the leachate generation between the two. On day 570, $BOD_5$ of Exp.45 and Exp.15 were 37000 mg/Land 25630 mg/L and $COD_{Cr}$ of Exp.45 and Exp.15 were 45480 mg/L, 30294 mg/L. TOC of Exp.45 was 2~3 times higher than Exp.15. Higher portion of FW in landfilling increased LFG generation. However, it generated more odor and made the quality of leachate. Therefore, 'FW direct Landfilling Prohibition' was evaluated as an appropriate legislation.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

The Long-term Durability Evaluation of PC Box for Near-surface Transit System manufactured by Microwave Heat curing (마이크로웨이브 발열양생에 의해 제작된 저심도 철도시스템용 PC BOX의 장기내구성 평가)

  • Koh, Tae-Hoon;Yoo, Han-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2016
  • This study examined the long-term durability of PC boxes, which was manufactured by low-carbon eco-friendly concrete using an alternative binder to cement and alternative fine aggregate to sand and microwave heat curing system to reduce the construction cost of a near-surface transit system. Based on the test results, the initial compressive strength of microwave heat cured concrete was higher than that of the steam cured concrete, but those were similar in the long-term age. In addition, there was no significant difference between the two curing conditions in the chemical resistance and the freeze-thawing resistance, and the chloride ion penetration level of the concrete cured by two methods was very low. Therefore, low-carbon eco-friendly concrete and microwave heat curing technology are expected to contribute to the economic construction of a near-surface transit system, and reduce carbon dioxide emissions and environmental impact.

Technical Trends of Hydrogen Production (수소생산 기술동향)

  • Ryi, Shin-Kun;Han, Jae-Yun;Kim, Chang-Hyun;Lim, Hankwon;Jung, Ho-Young
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.121-132
    • /
    • 2017
  • The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.