• Title/Summary/Keyword: 이산화탄소배출량

Search Result 475, Processing Time 0.027 seconds

In Pursuit of Low Carbon Cities: Understanding Limitations of ICLEI's International Local Government Greenhouse Gas Emissions Protocol (저탄소도시를 지향하며 -ICLEI 규약의 한계성 분석-)

  • Kim, Oh Seok
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.151-165
    • /
    • 2013
  • This article addresses potential errors in accounting greenhouse gas (GHG) emissions based on the International Council for Local Environmental Initiatives' (ICLEI's) International Local Government Greenhouse Gas Emissions Analysis Protocol (IEAP). The IEAP seems to provide practical guidelines for local governments so that they can measure their GHG emissions. The outcomes are immediately convertible for any national GHG inventory analysis when one is constructed based on the methodology drafted by Intergovernmental Panel on Climate Change. Further, it provides a societal foundation at the global level in order for local governments to collectively deal with 'double-counting' and 'allocation' problems. However, ICLEI's IEAP overlooks two major issues: (1) the protocol does not consider carbon dioxide emissions due to burning biological fuel as a type of GHG emission; and (2) it overlooks the possibility of indirect double-counting when producing emission factors at the local level. Thus, the limitations must be fixed so that the local governments can measure their GHG emissions more precisely, while the accurate GHG inventory will ultimately support reducing the local governments' emissions to mitigate anthropogenic climate change.

  • PDF

Optimization of Microalgae-Based Biodiesel Supply Chain Network Under the Uncertainty in Supplying Carbon Dioxide (이산화탄소 원료 공급의 불확실성을 고려한 미세조류 기반 바이오 디젤 공급 네트워크 최적화)

  • Ahn, Yuchan;Kim, Junghwan;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.396-407
    • /
    • 2020
  • As fossil fuels are depleted worldwide, alternative resources is required to replace fossil fuels, and biofuels are in the spotlight as alternative resources. Biofuels are produced from biomass, which is a renewable resource to produce biofuels or bio-chemicals. Especially, in order to substitute fossil fuels, the research focusing the biofuel (biodiesel) production based on CO2 and biomass achieves more attention recently. To produce biomass-based biodiesel, the development of a supply chain network is required considering the amounts of feedstocks (ex, CO2 and water) required producing biodiesel, potential locations and capacities of bio-refineries, and transportations of biodiesel produced at biorefineries to demand cities. Although many studies of the biomass-based biodiesel supply chain network are performed, there are few types of research handled the uncertainty in CO2 supply which influences the optimal strategies of microalgae-based biodiesel production. Because CO2, which is used in the production of microalgae-based biodiesel as one of important resources, is captured from the off-gases emitted in power plants, the uncertainty in CO2 supply from power plants has big impacts on the optimal configuration of the biodiesel supply chain network. Therefore, in this study, to handle those issues, we develop the two-stage stochastic model to determine the optimal strategies of the biodiesel supply chain network considering the uncertainty in CO2 supply. The goal of the proposed model is to minimize the expected total cost of the biodiesel supply chain network considering the uncertain CO2 supply as well as satisfy diesel demands at each city. This model conducted a case study satisfying 10% diesel demand in the Republic of Korea. The overall cost of the stochastic model (US$ 12.9/gallon·y) is slightly higher (23%) than that of the deterministic model (US$ 10.5/gallon·y). Fluctuations in CO2 supply (stochastic model) had a significant impact on the optimal strategies of the biodiesel supply network.

A Prototype of Demand Response System for Reducing Electric Power Load (전력수요관리를 위한 Demand Response시스템 구현)

  • Heo, Byeong-Mun;Ko, Jong-Min;Kim, Young-Il;Song, Jae-Ju;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.132-137
    • /
    • 2010
  • 이 논문에서는 전력기기의 사용량증가에 따른 전력량 부족으로 전력공급확보에 필요한 인원, 자재, 비용 등의 부족과 발전연료비용의 상승, 전력발전에 따른 $CO_2$배출량증가 등의 문제점을 최소화하기 위한 전력관리시스템(Demand Response System)을 제안한다. 전력관리 시스템은 전력사용자와 전력사업자와의 협력을 통해 전력확보와 수요를 관리하기 위한 전력절감 이벤트, 전력사용량 모니터링, 분석 등의 기능을 통하여 전력수요 관리가 가능한 시스템이다. 더 나아가 전력소비 관리가 이루어짐으로써 전력생산량 감소에 따른 이산화탄소의 절감효과를 기대할 수 있을 것이다.

  • PDF

Climate and geomorphic internal variabilities (기후 변화 및 침식 현상에서의 내적변동성)

  • Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.39-39
    • /
    • 2016
  • 기후 변화의 수자원 영향 평가에서 전지구모형이 갖는 불확실성이나 이산화탄소 배출 등의 시나리오별 불확실성에 대해서는 많은 연구가 진행되어져 왔으나, 외부의 변화가 아닌 지구 시스템상의 내부 변화에 대한 자연적인 변동성에 대해서는 상대적으로 연구가 미흡한 상태이다. 대표적인 내적 변동성의 예시로 엘리뇨 또는 라니뇨 현상을 들 수 있으며, 일정 영역 해수의 온도 변화에 따른 순환정도가 전세계적으로 큰 영향 (태풍, 가뭄, 홍수 등)을 주는 것을 확인할 수 있었다. 유역에서의 침식 및 퇴적 현상에서도 기후변화에서와 비슷한 내적변동성의 영향이 관찰되어지나, 과거의 대부분의 연구는 외적변동성의 영향에만 집중되어 왔다. 가장 빈번하게 발생하는 예로, 토양 표면의 미묘한 변화 (aggregation, dispersion, shielding, crusting 등)때문에 같은 양의 강우 또는 유출이 발생하는 경우라도 같은 양의 침식량이 발생하지 않는 현상을 들 수 있다. 여기에서 다루어지는 침식량의 '다름'은 같은 지역에서라도 적게는 수십배에서 크게는 수백배까지 예측량이 다를 수 있음을 뜻한다. 이러한 다름이 그동안 수자원/지질학을 연구하는 학자 및 실무자로 하여금 수치모델을 적용하고 예측하는 것을 어렵게 했던 원인이 되었다. 본 연구에서는 기후 변화가 가져올 수자원의 영향 평가를 수행할 것이다. 관심있는 기후변화 변수로서 기온 및 강수량을 시간단위로 상세화할 것이며, 변화한 기후의 영향을 평가할 수자원의 현상으로는 증발산, 토양수분량, 유출량, 하천에서의 수심 및 첨두량, 침식량 등을 고려할 것이다. 물리현상을 모의하기 위해, 유역기반의 수리, 수문, 침식 및 퇴적 현상을 동시에 계산할 수 있는 통합모델을 개발하였고 적용하였다. 여기에서 얻은 결과로부터 내적 변동성이 수자원 현상에 미치는 불확실성을 확률통계적인 기법을 이용하여 정량화할 수 있을 것이다.

  • PDF

Enhancement of CO2 permeance by incorporating CaCO3 in Mixed Matrix Membranes (CaCO3을 이용한 혼합매질분리막의 이산화탄소 투과도 향상)

  • Park, Cheol Hun;Jung, Jung Pyo;Lee, Jae Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.55-61
    • /
    • 2018
  • With vigorous development of petroleum and chemical industry, emission of carbon dioxide has attracted tremendous attention globally due to global warming problem and abnormal climate change. To address these problems, in this study, a PEGBEM-g-POEM graft copolymer with high $CO_2$ affinity was synthesized and $CaCO_3$ was incorporated to form mixed matrix membranes (MMMs) for enhancement of $CO_2$ permeance. By varying the addition weight of $CaCO_3$ in MMMs, high separation performance of $CO_2$ over $N_2$ was obtained. At 50 wt% loading of $CaCO_3$, the greatest separation performance was obtained with an enhanced $CO_2$ permeance from 22.5 to 28.16 GPU and slightly increased $CO_2/N_2$ selectivity from 44.7 to 45.42. It resulted from the increased $CO_2$ solubility of MMMs due to specific interaction between $CaCO_3$ and $CO_2$ molecules. Upon excess loading of $CaCO_3$, MMMs exhibited loss of $CO_2$ separation performance due to the formation of interfacial defects. Based on this result, it is considered that the proper addition of $CaCO_3$ is crucial for improvement of $CO_2$ separation performance.

Recent Development of Carbon Dioxide Conversion Technology (이산화탄소 전환 기술의 현황)

  • Choi, Ji-Na;Chang, Tae-Sun;Kim, Beom-Sik
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.229-249
    • /
    • 2012
  • At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber (리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가)

  • Son, Whi-Lim;Park, Joo-Saeng;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study carried out life cycle assessment for evaluating environmental impacts of timber Arch-Truss bridge by using domestic Pinus rigida Miller glued-laminated timber throughout life cycle such as extraction, manufacturing, transportation, construction, use, dismantlement, transportation of waste, disposal and recycling. The life cycle GHG (GreenHouse Gas) emissions of the target bridge are 192.56 ton $CO_2$ eq. in 50 years. Especially, the life cycle GHG emissions of concrete used in the target bridge are 82.84 ton $CO_2$ eq. which accounts for 53.02% of the GWP (Global Warming Potential) in extraction and manufacturing stages. The target bridge is constructed of $116.57m^3$ of domestic Pinus rigida Miller glued-laminated timber and used timber has stored 104.72 ton $CO_2$. If an effect of carbon storage in timber is applied to the total GHG emissions of the target bridge, the GHG emissions can be reduced by 54.38%. In the case of substitution effect, if domestic Pinus rigida Miller glued-laminated timber replaces steel manufactures used in other bridge which has the same structure and life span as the target bridge, the GHG emissions in extraction and manufacturing stages can be reduced by 10.26% to 23.91%.

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

Performance Analysis of Low Power Paging Scheme using user's Property (사용자의 개별적 특성을 활용한 저전력 페이징 방안의 제안 및 분석)

  • Jeong, Ji-Won;Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • Recently subscribers in mobile communication services increase gradually, and the new multifunctional portable terminals can provide various functionalities. However this trend may not be desirable in Green IT respect because the emission of carbon dioxides emitted during operations of base station and mobile stations can cause significant effect on the emissions of carbon dioxides. In this paper the power saving scheme which can adjust slot index while the system is in a paging phase has been proposed and its performance has been evaluated. The slot cycle index can be adjusted according to individual user's property, its effect on the system performance has been investigated. In order to mitigate its adverse effect, power ramping scheme is considered and evaluated thereafter.

Study on Absorption Characteristics of $CO_2$ in Aqueous Alkanolamine Solutions (알카놀아민 수용액을 이용한 이산화탄소 흡수특성 연구)

  • Oh, Sang-Kyo;Rhee, Young-Woo;Nam, Sung-Chan;Yoon, Yeo-Il;Kim, Young-Eun
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.241-246
    • /
    • 2008
  • Increase of $CO_2$ by using fossil fuels makes mainly global warming and the international efforts to reduce the $CO_2$ emission is being promoted. Absorption process using aqueous alkanolamine solution to remove acid components in the mixed gases has been used commercially. This method was used to remove $CO_2$ in the flue gas in recent years. $CO_2$ Absorption characteristics of several aqueous alkanolamine solutions such as MEA, DEA and AMP was studied by measuring vapor-liquid-equilibrium(VLE) and absorption velocity in this study. VLE measuring equipment, shell and reactor type, was used to acquire VLE data, equilibrium $CO_2$ pressure(${P_{CO_2}}^*$) and time at each pulse gas input. We also acquired the $CO_2$ absorption velocity by measuring the time to arrive the VLE at $40{\sim}80^{\circ}C$ and first gas input. The $CO_2$ absorption capacity of MEA 10wt% solution was higher than two alkanolamine solutions at $40^{\circ}C$ and the equilibrium $CO_2$ loading was 0.5. Absorption capacity was excellent as follows; AMP>DEA>MEA. But absorption velocity was fast as follows; MEA>AMP>DEA. Though good absorbent was considered by many variables, absorption velocity and capacity was more important factor.