DOI QR코드

DOI QR Code

Recent Development of Carbon Dioxide Conversion Technology

이산화탄소 전환 기술의 현황

  • Choi, Ji-Na (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology) ;
  • Chang, Tae-Sun (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology) ;
  • Kim, Beom-Sik (Greenhouse Gas Resources Research Group, Research Center for Environmental Resources, Korea Research Institute of Chemical Technology)
  • 최지나 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹) ;
  • 장태선 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹) ;
  • 김범식 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹)
  • Received : 2012.06.20
  • Accepted : 2012.09.14
  • Published : 2012.09.30

Abstract

At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

산업 발달로 화석 연료 사용이 급증하고 이에 따른 지구 온난화 문제와 자원 고갈 문제가 대두되어 지속 성장을 위협하고 있다. 따라서 지속 성장을 위해서 두 문제를 모두 해결하여야 한다. 현재 이산화탄소의 처리 방법으로 인식되고 있는 이산화탄소 포집 및 저장 기술(carbon capture and sequestration, CCS)의 환경 논란으로 인해 사후 처리 기술의 필요성이 커지고 있다. 이에 해결책중 하나로 부각되고 있는 이산화탄소 포집 및 재활용 기술(carbon capture and utilization, CCU)에 대해서 알아보았다. 이산화탄소 전환 기술은 이산화탄소 배출량 감소에 따른 지구 온난화 문제의 해결 뿐 아니라 탄소원의 재활용이란 측면에서 자원고갈 문제의 해결책으로 제시될 수 있겠다. 이산화탄소 전환 기술은 기상 전환과 액상 전환으로 나눌 수 있으며 기상 전환의 경우 필요 에너지 공급원과 온화한 반응조건에서 전환이 이뤄져야 하고 저에너지 소비 생성물 분리 정제 기술의 개발이 필요하다. 액상 전환의 경우, 반응 속도를 높일 수 있는 촉매 및 광감응제 개발과 함께 촉매, 빛, 전기의 혼성 시스템의 개발이 요구되어진다. 이산화탄소 전환 기술은 신재생 에너지 및 바이오산업의 경쟁력 향상을 위한 연결 기술로 그 가치가 매우 크다.

Keywords

References

  1. Song, C. O., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_{2}$ for Sustainable Dvelopment Ivolving Energy, Catalysis, Adsorption and Chemical processing," Catal. Today, 115, 2-32 (2006). https://doi.org/10.1016/j.cattod.2006.02.029
  2. Aresta, M., and Dibenedetto, A., Carbon Dioxide Recovery and Utilization, Kluwer Academic Publisher, Dordrecht, 2003, pp. 211-214.
  3. Ruckenstein, E., and Wang, H. Y., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Cobalt Catalysts," Appl. Catal. A, 204, 257-263(2000) https://doi.org/10.1016/S0926-860X(00)00674-8
  4. Edwards, J. H., and Maitra, A. M., "The Chemistry of Methane Reforming with Carbon Dioxide and Its Current and Potential Applications," Fuel Proc. Technol., 42, 269-289 (1995). https://doi.org/10.1016/0378-3820(94)00105-3
  5. Ruckenstein, E., and Wang, H. Y., "Carbon Deposition and Catalytic Deactivation during $CO_{2}$ Reforming of $CH_{4}$ over Co/gamma-$Al_{2}O_{3}$ Catalysts," J. Catal., 205, 289-293 (2002). https://doi.org/10.1006/jcat.2001.3458
  6. Hou, Z. Y., and Yashima, T., "Supported Co Catalysts for Methane Reforming with $CO_{2}$," React. Kinet. Catal. Lett., 81(1), 153-159 (2004). https://doi.org/10.1023/B:REAC.0000016529.84565.e5
  7. Bouarab, R., Cherifi, O., and Auroux, A., "Reforming of Methane by $CO_{2}$ in Presence of Cobalt-based Catalysts," Green Chem., 5, 209-212 (2003). https://doi.org/10.1039/b210348f
  8. Mondal, K. C., Choudhary, V. R., and Joshi, U. A., "$CO_{2}$ Reforming of Methane to Syngas over Highly Active and Stable Supported $CoO_{x}$ (Accompanied with MgO, $ZrO_{2}$ or $CeO_{2}$) Catalysts," Appl. Catal. A, 316, 47-52 (2007). https://doi.org/10.1016/j.apcata.2006.09.016
  9. Nagaoka, K., Takanabe, K., and Aika, K., "Influence of the Reduction Temperature on Catalytic Activity of Co/$TiO_{2}$ (Anatase- type) for High Pressure Dry Reforming of Methane," Appl. Catal. A, 255, 13-21 (2003). https://doi.org/10.1016/S0926-860X(03)00631-8
  10. Mark, M. F., and Maier, W. F., "$CO_{2}$-reforming of Methane on Supported Rh and Ir Catalysts," J. Catal., 164, 122-130 (1996). https://doi.org/10.1006/jcat.1996.0368
  11. Wang, H. Y., and Ruckenstein, E., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Rhodium Catalysts: the Effect of Support," Appl. Catal. A, 204, 143-152 (2000). https://doi.org/10.1016/S0926-860X(00)00547-0
  12. Hou, Z. Y., Chen, P., Fang, H. L., Zheng, X. M., and Yashima, T., "Production of Synthesis Gas via Methane Reforming with $CO_{2}$ on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts," Int. J. Hydrogen Energy, 31, 555-561 (2006). https://doi.org/10.1016/j.ijhydene.2005.06.010
  13. Bradford, M. C. J., and Vannice, M. A., "$CO_{2}$ Reforming of $CH_{4}$ over Supported Pt Catalysts," J. Catal., 173, 157-171 (1998). https://doi.org/10.1006/jcat.1997.1910
  14. Bitter, J. H., Seshan, K., and Lercher, J. A., "Mono and Bifunctional Pathways of $CO_{2}$/$CH_{4}$ Reforming over Pt and Rh Based Catalysts," J. Catal., 176, 93-101 (1998). https://doi.org/10.1006/jcat.1998.2022
  15. Bitter, J. H., Seshan, K., and Lercher, J. A., "The State of Zirconia Supported Platinum Catalysts for $CO_{2}$/$CH_ {4}$ Reforming," J. Catal., 171, 279-286 (1997). https://doi.org/10.1006/jcat.1997.1792
  16. Souza, M. M. V. M., Aranda, D. A. G., and Schmal, M., "Coke Formation on Pt/$ZrO_{2}$/$Al_{2}O_{3}$ Catalysts during $CH_{4}$ Reforming with $CO_{2}$," Ind. Eng. Chem. Res., 41, 4681-4685 (2002). https://doi.org/10.1021/ie010970a
  17. Bitter, J. H., Seshan, K., and Lercher, J. A., "Deactivation and Coke Accumulation during $CO_{2}$/$CH_{4}$ Reforming over Pt Catalysts," J. Catal., 183, 336-343 (1999). https://doi.org/10.1006/jcat.1999.2402
  18. Ballarini, A. D., de Miguel, S. R., Jablonski, E. L., Scelza, O. A., and Castro, A. A., "Reforming of $CH_{4}$ with $CO_{2}$ on Pt-supported Catalysts Effect of the Support on the Catalytic Behaviour," Catal. Today, 107-108, 481-486 (2005). https://doi.org/10.1016/j.cattod.2005.07.058
  19. Nakagawa, K., Anzai, K., Matsui, N., Ikenaga, N., Suzuki, T., and Teng, Y. H., "Effect of Support on the Conversion of Methane to Synthesis Gas over Supported Iridium Catalysts," Catal. Lett., 51, 163-167 (1998). https://doi.org/10.1023/A:1019065824331
  20. Wisniewski, M., Boreave, A., and Gelin, P., "Catalytic $CO_{2}$ Reforming of Methane over $Ir/Ce_{0.9}Gd_{0.1}O_{2-x}$," Catal. Commun., 6, 596-600 (2005). https://doi.org/10.1016/j.catcom.2005.05.008
  21. Schulz, P. G., Gonzalez, M. G., Quincoces, C. E., and Gigola, C. E., "Methane Reforming with Carbon Dioxide. The Behavior of Pd/alpha-$Al_{2}O_{3}$ and Pd-CeOx/alpha-$Al_{2}O_{3}$ Catalysts," Ind. Eng. Chem. Res., 44, 9020-9029 (2005). https://doi.org/10.1021/ie050517p
  22. Carrara, C., Munera, J., Lombardo, E. A., and Cornaglia, L. M., "Kinetic and Stability Studies of Ru/$La_{2}O_{3}$ Used in the Dry Reforming of Methane," Top. Catal., 51, 98-106 (2008). https://doi.org/10.1007/s11244-008-9131-y
  23. Bodrov, I. M., and Apel'baum, L. O., "Reaction Kinetics of Methane and Carbon Dioxide on a Nickel Surface," Kinet. Catal., 8, 326-330 (1967).
  24. Guo, J. Z., Hou, Z. Y., Gao, J., and Zheng, X. M., "DRIFTS Study on Adsorption and Activation of $CH_{4}$ and $CO_{2}$ on Ni/ $SiO_{2}$ Catalyst with Various Ni Particle Sizes," Chin. J. Catal., 28(1), 22-26 (2007). https://doi.org/10.1016/S1872-2067(07)60009-6
  25. Osaki, T., Masuda, H., and Mori, T., "Intermediate Hydrocarbon Species for the $CO_{2}$-$CH_{4}$ Reaction on Supported Ni Catalysts," Catal. Lett., 29, 33-37 (1994). https://doi.org/10.1007/BF00814249
  26. Hu, Y. H., and Ruckenstein, E., "Transient Response Analysis via a Broadened Pulse Combined with A Step Change or An Isotopic Pulse. Application to $CO_{2}$ Reforming of Methane over NiO/$SiO_{2}$," J. Phys. Chem. B, 101, 7563-7565 (1997). https://doi.org/10.1021/jp971711v
  27. Randall, D., and Lee, S., The Polyurethane books, John Wiley & Sons, New York, 2002, pp. 113-126.
  28. Alper, H., and Butler, D. C. D., "Synthesis of Isocyanates from Carbamate Esters Employing Boron Trichloride," Chem. Commun., 2575-2576 (1998).
  29. Alper, H., and Valli, V. L. K., "A Simple, Convenient, and Efficient Method for the Synthesis of Isocyanates from Urethanes," J. Org. Chem., 60, 257-258 (1995). https://doi.org/10.1021/jo00106a044
  30. Chong, P. J., Janicki, S. Z., and Pertillo, P. A., "Multilevel Selectivity in the Mild and High-Yielding Chlorosilane-Induced Cleavage of Carbamates to Isocyanates," J. Org. Chem., 63, 8515-8521 (1998). https://doi.org/10.1021/jo981816+
  31. Tsuda, T., Sanada, S. I., and Saegusa, T., "Copper-promoted Deoxygenation of Carbon Dioxide by Isocyanide," J. Organometallic Chem., 116, C10-C12 (1976). https://doi.org/10.1016/S0022-328X(00)87206-X
  32. Kim, W. Y., Chang, J. S., Park, S. E., Ferrence, G., and Kubaik, C. P., "Mechanistic and IR Spectroelectrochemical Studies for Alkali Metal Ion Catalyzed Multiple Bond Metathesis Reactions of Carbon Dioxide," Chem. Lett., 1063-1064 (1998).
  33. Kilgore, U. J., Basuli, F., Huffmann, J. C., and Mindiola, D. J., "Aryl Isocyanate, Carbodiimide, and Isocyanide Prepared from Carbon Dioxide. A Metathetical Group-Transfer Tale Involving a Titanium-Imide Zwitterion," Inorg. Chem., 45, 487- 489 (2006). https://doi.org/10.1021/ic052065e
  34. Sita, L. R., J. R., and Xi, R., "Facile Metathetical Exchange between Carbon Dioxide and the Divalent Group 14 Bisamides $M[N(SiMe_{3})_{2}]_{2}$ (M = Ge and Sn)," J. Am. Chem. Soc., 118, 10912-10913 (1996). https://doi.org/10.1021/ja962281+
  35. Horvath, M. J., Saylik, D., and Elmes, P. S., "A Mitsunobubased Procedure for the Preparation of Alkyl and Hindered Aryl Isocyanates from Primary Amines and Carbon Dioxide under Mild Conditions," Tetrahedron Lett., 40, 363-366 (1999). https://doi.org/10.1016/S0040-4039(98)02312-0
  36. Saylik, D., Horvath, M. J., Elmes, P. S., Jackson, W. R., Lovel, C. G., and Moody, K., "Preparation of Isocyanates from Primary Amines and Carbon Dioxide Using Mitsunobu Chemistry," J. Org. Chem., 64, 3940-3946 (1999). https://doi.org/10.1021/jo982362j
  37. Anatastas, P. T., Zimmerman, and Kirchhoff, M. M., "Origins, Current Status, and Future Challenges of Green Chemistry," Acc. Chem. Res., 35, 686-694 (2002). https://doi.org/10.1021/ar010065m
  38. Trost, B. M., "On Inventing Reactions for Atom Economy," Acc. Chem. Res., 35, 695-705 (2002). https://doi.org/10.1021/ar010068z
  39. Grodkowski, J., Behar, D., Neta, P., and Hambright, P., "Iron Porphyrin-Catalyzed Reduction of $CO_{2}$. Photochemical and Radiation Chemical Studies," J. Phys. Chem. A, 101, 248-254 (1997). https://doi.org/10.1021/jp9628139
  40. Behar, D., Dhanasekaran, T., Neta, P., Hosten, C. M., Ejeh, D., Hambright, P., and Fujita, E., "Cobalt Porphyrin Catalyzed Reduction of $CO_{2}$. Radiation Chemical, Photochemical, and Electrochemical Studies," J. Phys. Chem. A, 102, 2870-2877 (1998). https://doi.org/10.1021/jp9807017
  41. Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., and Fujitam, E., "Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of $CO_{2}$," J. Phys. Chem. A, 104, 11332-11339 (2000). https://doi.org/10.1021/jp002709y
  42. Grodkowski, J., and Neta, P., "Cobalt Corrin Catalyzed Photoreduction of $CO_{2}$," J. Phys. Chem. A, 104, 1848-1853 (2000). https://doi.org/10.1021/jp9939569
  43. Grodkowski, J., Neta, P., Fujita, E., Mhammed, A., Simkhovich, L., and Gross, Z., "Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of $CO_{2}$," J. Phys. Chem. A, 106, 4772-4778 (2002). https://doi.org/10.1021/jp013668o
  44. Hawecker, J., Lehn, J. M., and Ziessel, R., "Efficienct Photochemical Reduction of $CO_{2}$ to CO by Visible-Light Irradiation of Systems Containing $Re(bipy)(CO)_{3}X$ or $Re(bipy)_{3}^{2+}-CO^{2+}$ Combinations as Homogeneous Catalysts," J. Chem. Soc., Chem. Commun., 536-538 (1983).
  45. Hori, H., Johnson, F. P. A., Koike, K., Ishitani, O., and Ibusuki, T., "Efficient Photocatalytic $CO_{2}$ Reduction using $[Re(bpy)(CO)_{3}{P(OEt)_{3}}]^{+}$," J. Photochem. Photobiol. A, 96, 171-174 (1996). https://doi.org/10.1016/1010-6030(95)04298-9
  46. Hori, H., Johnson, F. P. A., Koike, K., Takeuchi, K., Ibusuki, T., and Ishitani, O., "Photochemistry of $[Re(bipy)(CO)_{3}(PPh_{3})]^{+}$ (bipy = 2,2'-bipyridine) in the presence of Triethanolamine Associated with Photoreductive Fixation of Carbon Dioxide: Participation of a Chain Reaction Mechanism," J. Chem. Soc. Dalton Trans., 1019-1024 (1997).
  47. Takeda, H., Koike, K., Inoue, H., and Ishitani, O., "Development of an Efficient Photocatalytic System for $CO_{2}$ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," J. Am. Chem. Soc., 130, 2023-2031 (2008). https://doi.org/10.1021/ja077752e
  48. Koike, K., Hori, H., Ishizuka, M., Westwell, J. R., Takeuchi, W., Ibusuki, T., Enjouji, K., Konno, H., Skamoto, K., and Ishitani, O., "Key Process of the Photocatalytic Reduction of $CO_{2}$ using $[Re(4,4'-X_{2}-bipyridine)(CO)_{3}PR_{3}]^{+}$ (X = $CH_{3}$, H, $CF_{3}$ and $PR_{3}$ = Phosphorus Ligands): Dark Reaction of the One-Electron-Reduced Complexes with $CO_{2}$," Organometallics, 16, 5724-5729 (1997). https://doi.org/10.1021/om970608p
  49. Tsubaki, H., Sekine, A., Ohashi, Y., Koike, K., Takeda, H., and Ishitani, O., "Control of Photochemical, Photophysical, Electrochemical, and Photocatalytic Properties of Rhenium(I) Complexes Using Intramolecular Weak Interactions between Ligands," J. Am. Chem. Soc., 127, 15544-15555 (2005). https://doi.org/10.1021/ja053814u
  50. Tsubaki, H., Sugawara, A., Takeda, H., Gholamkhass, B., Koike, K., Nozaki, K., Pac, C., Turner, J. J., and Westwell, J. R., "Photocatalytic Reduction of $CO_{2}$ using cis,trans-$[Re(dmbpy)(CO)_{2}(PR_{3})(PR'_{3})]^{+}$ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine)," Res. Chem. Intermed., 33(1-2), 37-48 (2007). https://doi.org/10.1163/156856707779160771
  51. Willner, I., Maidan, R., Mandler, D., Durr, H., Dorr, G., and Zengerle, K., "Photosensitized Reduction of $CO_{2}$ to $CH_{4}$ and $H_{2}$ Evolution in the Presence of Ruthenium and Osmium Colloids: Strategies To Design Selectivity of Products Distribution," J. Am. Chem. Soc., 109(26), 6080-6086 (1987). https://doi.org/10.1021/ja00254a029
  52. Maidan, R., and Willner, I., "Photoreduction of $CO_{2}$ to $CH_{4}$ in Aqueous Solutions Using Visible Light," J. Am. Chem. Soc., 108(25), 8100-8101 (1986). https://doi.org/10.1021/ja00285a043
  53. Ishida, H., Tanaka, K., Tanaka, T., "Electrochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and $[Ru(bpy)_{2}(CO)Cl]^{+}$. The Effect of pH on the Formation of CO and HCOOH," Organometallics, 5, 181-186 (1986).
  54. Ishida, H., Terada, T., Tanaka, K., and Tanaka, T., "Photochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ using Triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an Electron Donor," Inorg. Chem., 29, 905-911 (1990). https://doi.org/10.1021/ic00330a004
  55. Ishida, H., Tanaka, K., and Tnanka, T., "Photochemical $CO_{2}$ Reduction by an NADH Model Compound in the Presence of $[Ru(bpy)_{3}]^{2+}$ and $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ (bpy = 2,2'-bipyridine) in $H_{2}O$/DMF," Chem. Lett., 17(2), 339-342 (1988). https://doi.org/10.1246/cl.1988.339
  56. Lehn, J.-M., and Ziessel, R., "Photochemical Reduction of Carbon dioxide to Formate Catalyzed by 2,2'-bipyridine- or l,10-phenanthroline-ruthenium(II) Complexes," J. Organomet. Chem., 29, 157-173 (1990).
  57. Tinnemans, A. H. A., Koster, T. P. M., Thewissen, D. H. M. W., and Mackor, A., "Tetraaza-macrocyclic Cobalt(II) and Nickel( II) Complexes as Electron-Transfer Agents in the Photo (electro)chemical and Electrochemical Reduction of Carbon Dioxide," Recueil des Travaux Chimiques des Pays-Bas, 103 (10), 1288-295 (1984).
  58. Grant, J. L., Goswami, K., Spreer, L. O., Otvos, J. W., and Calvin, M., "Photochemical Reduction of Carbon Dioxide to Carbon Monoxide in Water using a Nickel(II) Tetra-azamacrocycle Complex as Catalyst," J. Chem. Soc. Dalton Trans., 2105- 2109 (1987).
  59. Kimura, E., Wada, S., Shionoya, M., and Okazaki, Y., "New Series of Multifunctionalized Nickel(II)-Cyclam (Cyclam = 1,4,8,1l-Tetraaza-cyclotetradecane) Complexes. Application to the Photoreduction of Carbon Dioxide," Inorg. Chem., 33, 770-778 (1994). https://doi.org/10.1021/ic00082a025
  60. Gholamkhass, B., Mametsuka, H., Koike, K., Tanabe, T., Furue, M., and Ishitani, O., "Architecture of Supramolecular Metal Complexes for Photocatalytic $CO_{2}$ Reduction: Ruthenium- Rhenium Bi- and Tetranuclear Complexes," Inorg. Chem., 44, 2326-2336 (2005). https://doi.org/10.1021/ic048779r
  61. Sato, S., Koike, K., Inoue, H., and Ishitani, O., "Highly Efficient Supramoecular Photocatalysts for CO Reduction using Visible Light," Photochem. Photobiol. Sci., 6, 454-461 (2007). https://doi.org/10.1039/b613419j
  62. Matsuoka, S., Yamamoto, K., Ogata, T., Kusaba, M., Nakashima, N., Fujita, E., and Yanagida, S., "Efficient and Selective Electron Mediation of Cobalt Complexes with Cyclam and Related Macrocycles in the p-Terphenyl-Catalyzed Photoreduction of $CO_{2}$," J. Am. Chem. Soc., 115, 601-609 (1993). https://doi.org/10.1021/ja00055a032
  63. Ogata, T., Yamamoto, Y., Wada, Y., Murakoshi, K., Kusaba, M., Nakashima, N., Ishida, A., Takamuku, S., and Yanagida, S., "Phenazine-Photosensitized Reduction of $CO_{2}$ Mediated by a Cobalt-Cyclam Complex through Electron and Hydrogen Transfer," J. Phys. Chem., 99, 11916-11922 (1995). https://doi.org/10.1021/j100031a020
  64. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). https://doi.org/10.1038/277637a0
  65. Koci, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J., and Solcova, O., "Effect of $TiO_{2}$ Particle Size on the Photocatalytic Reduction of $CO_{2}$," Appl. Catal. B., 89, 494-502 (2009). https://doi.org/10.1016/j.apcatb.2009.01.010
  66. Wu, J. C. S., "Photocatalytic Reduction of Greenhouse Gas $CO_{2}$ to Fuel," Catal. Surv. Asia, 13(1), 30-40 (2009). https://doi.org/10.1007/s10563-009-9065-9
  67. Nguyen, T-V., Wu, J. C. S., and Chiou, C-H., "Photoreduction of $CO_{2}$ over Ruthenium Dye-sensitized $TiO_{2}$-based Catalysts under Concentrated Natural Sunlight," Catal. Commun., 9, 2073-2076 (2008). https://doi.org/10.1016/j.catcom.2008.04.004
  68. Subrahmanyam, M., Kaneco, S., and Alonso-Vante, N., "A screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity," Appl. Catal. B., 23(2-3), 169-174 (1999). https://doi.org/10.1016/S0926-3373(99)00079-X
  69. Liu, B-J., Torimoto, T., and Yoneyama, H., "Photocatalytic Reduction of Carbon Dioxide in the Presence of Nitrate using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 115, 227-230 (1998). https://doi.org/10.1016/S1010-6030(98)00272-X
  70. Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of High Pressure Carbon Dioxide using $TiO_{2}$ Powders with a Positive Hole Scavenger," J. Photochem. Photobiol. A, 115, 223-226 (1998). https://doi.org/10.1016/S1010-6030(98)00274-3
  71. Dey, G. R., Belapurkar, A. D., and Kishore, K., "Photo-catalytic Reduction of Carbon Dioxide to Methane using $TiO_{2}$ as Suspension in Water," J. Photochem. Photobiol. A, 163, 503-508 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.022
  72. Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of $CO_{2}$ using $TiO_{2}$ Powders in Supercritical Fluid $CO_{2}$," Energy, 24, 21-30 (1999). https://doi.org/10.1016/S0360-5442(98)00070-X
  73. Liu, B. J., Torimoto, T., Matsumoto, H., and Yoneyama, H., "Effect of Solvents on Photocatalytic Reduction of Carbon Dioxide using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 108, 187-192 (1997). https://doi.org/10.1016/S1010-6030(97)00082-8
  74. Tseng, I. H., Chang, W.-C., and Wu, J. C. S., "Photoreduction of $CO_{2}$ using Sol-gel Derived Titania and Titania-supported Copper Catalysts," Appl. Catal. B, 37, 37-48 (2002). https://doi.org/10.1016/S0926-3373(01)00322-8
  75. Adachi, K., Ohta, K., and Mizuno, M., "Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon using Copperloaded Titanium Dioxide," Solar Energy, 53, 187-190 (1994). https://doi.org/10.1016/0038-092X(94)90480-4
  76. Ishitani, O., Inoue, C., Suzuki, Y., and Ibusuki, T., "Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal Deposited $TiO_{2}$," J. Photochem. Photobiol. A, 72, 269-271 (1993). https://doi.org/10.1016/1010-6030(93)80023-3
  77. Slamet, Nasution, H. W., Purnama, E. Kosela, S., and Gunlazuardi, J., "Photocatalytic Reduction of $CO_{2}$ on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method," Catal. Commun., 6, 313-319 (2005). https://doi.org/10.1016/j.catcom.2005.01.011
  78. Shioya, Y., Ikeue, K., Ogawa, M., and Anpo, M., "Synthesis of Transparent Ti-containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of $CO_{2}$ with $H_{2}O$," Appl. Catal. A, 254, 251-259 (2003). https://doi.org/10.1016/S0926-860X(03)00487-3
  79. Ikeue, K., Nozaki, S., Ogawa, M., and Anpo, M., "Characterization of Self-standing Ti-containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$," Catal. Today, 74, 241-248 (2002). https://doi.org/10.1016/S0920-5861(02)00027-5
  80. Ikeue, K., Yamashita, H., Anpo, M., and Takewaki, T., "Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$ on Ti-$\beta$ Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties," J. Phys. Chem. B, 105, 8350-8355 (2001). https://doi.org/10.1021/jp010885g
  81. Xia, X.-H., Jia, Z-J., Yu, W., Liang, Y., Wang, Z., and Ma, L.-L., "Preparation of Multi-walled Carbon Nanotube Supported $TiO_{2}$ and its Photocatalytic Actvitity in the Reduction of $CO_{2}$ with $H_{2}O$," Carbon, 45, 717-721 (2007). https://doi.org/10.1016/j.carbon.2006.11.028
  82. Kim, W., Seok, T., and Choi, W., "Nafion Layer-enhanced Photosynthetic Conversion of $CO_{2}$ into Hydrocarbons on $TiO_{2}$ Nanoparticles," Energy Environ. Sci., 5, 6066-6070 (2012) https://doi.org/10.1039/c2ee03338k
  83. Tsuneoka, H., Teramura, K., Shishido, T., and Tanaka, T., "Adsorbed Species of $CO_{2}$ and $H_{2}$ on $Ga_{2}O_{3}$ for the Photocatalytic Reduction of $CO_{2}$," J. Phys. Chem. C, 114, 8892- 8898 (2010). https://doi.org/10.1021/jp910835k
  84. Teramura, K., Okuoka, S., Tsuneoka, H., Shishido, T., and Tanaka, T., "Photocatalytic Reduction of $CO_{2}$ using $H_{2}$ as Reductant over $ATaO_{3}$ Photocatalysts (A = Li, Na, K)," Appl. Catal. B, 96, 565-568 (2010). https://doi.org/10.1016/j.apcatb.2010.03.021
  85. Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., and Yoshida, S. "Photoreduction of Carbon Dioxide by Hydrogen over Magnesium Oxide," Phys. Chem. Chem. Phys., 3, 1108-1113 (2001). https://doi.org/10.1039/b008887k
  86. Kohno, Y., Tanaka, T., Funabiki, T., and Yoshida, S., "Photoreduction of $CO_{2}$ with $H_{2}$ over $ZrO_{2}$. A Study on Interaction of Hydrogen with Photoexcited $CO_{2}$," Phys. Chem. Chem. Phys., 2, 2635-2639 (2000). https://doi.org/10.1039/b001642j
  87. Liu, W., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., and Whangbo, M.-H., "Selective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with $BiVO_{4}$ Photocatalyst," Catal. Commun., 11, 210-213 (2009). https://doi.org/10.1016/j.catcom.2009.10.010
  88. Pan, P.-W., and Chen, Y.-W., "Photocatalytic Reduction of Carbon Dioxide on NiO/$InTaO_{4}$ under Visible-light Irradiation," Catal. Commun., 8, 1546-1549 (2007). https://doi.org/10.1016/j.catcom.2007.01.006
  89. Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., and Kobayashi, H., "Effect of Surface Structures on Photocatalytic $CO_{2}$ Reduction Using Quantized CdS Nanocrystallites," J. Phys. Chem. B, 101, 8270-8278 (1997). https://doi.org/10.1021/jp971621q
  90. Yanagida, S., Kanemoto, M., Ishihara, K. I., Wada, Y., Sakata, T., and Mori, H., "Visible-Light Induced Photoreduction of $CO_{2}$ with CdS Nanocrystallites- Importance of the Morphology and Surface Structures Controlled through Solvation by N, N-Dimethylformamide," Bull, Chem. Soc. Jpn., 70, 2063-2070 (1997). https://doi.org/10.1246/bcsj.70.2063
  91. Kanemoto, M., Hosokawa, H., Wada, Y., Murakoshi, K., Yanagida, S., Sakata, T., Mori, H., Ishikawa, M., and Kobayashi, H., "Role of Surface in the Photoreduction of Carbon Dioxide Catalysed by Colloidal ZnS Nanocrystallites in Organic Solvent," J. Chem. Soc, Faraday Trans., 92(13), 2401-2411 (1996). https://doi.org/10.1039/ft9969202401
  92. Inoue, H., Moriwaki, H., Maeda, K., and Yoneyama, H., "Photoreduction of Carbon Dioxide using Chalcogenide Semiconductor Microcrystals," J. Photoochem. Photobiol. A, 86, 191- 196 (1995). https://doi.org/10.1016/1010-6030(94)03936-O
  93. Wang, C., Thompson, R. L., Baltrus, J., and Matranga, C., "Visible-Light Photoreduction of $CO_{2}$ Using CdSe/Pt/$TiO_{2}$ Heterostructured Catalysts," J. Phys. Chem. Lett., 1, 48-53 (2010). https://doi.org/10.1021/jz9000032
  94. Ozcan, O., Yukruk, F., Akkaya, E., and Uner, D., "Dye Sensitized $CO_{2}$ Reduction over Pure and Platinized $TiO_{2}$," Top. Catal., 44(4), 523-528 (2007). https://doi.org/10.1007/s11244-006-0100-z
  95. Woolerton, T. W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S. W., and Armstrong, F. A., "Efficient and Clean Photoreduction of $CO_{2}$ to CO by Enzyme-modified $TiO_{2}$ Nanoparticles Using Visible Light," J. Am. Chem. Soc., 132, 2132-2133 (2010). https://doi.org/10.1021/ja910091z
  96. Halmann, M., "Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Posphide in Liquid Junction Solar Cells," Nature, 275, 115-116 (1978). https://doi.org/10.1038/275115a0
  97. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). https://doi.org/10.1038/277637a0
  98. Taniguchi, I., Aurian-blajeni, B., and Bockris, J. O., "Photoaided Reduction of Carbon Dioxide to Carbon Monoxide," J. Electroanal. Chem., 157(2), 179-182 (1983).
  99. Canfield, D., and Frese, J. K. W., "Reduction of Carbon Dioxide to Methanol on n- and p-GaAs and p-InP: Effect of Crystal Face, Electrolyte and Current Density," J. Electrochem. Soc., 130(8), 1772-1773 (1983). https://doi.org/10.1149/1.2120090
  100. Ikeda, S., Yoshida, M., and Ito, K. "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-GaP Photocathodes in Aqueous Electrolytes" Bull. Chem. Soc. Jpn., 58(5), 1353-1357 (1985). https://doi.org/10.1246/bcsj.58.1353
  101. Ikeda, S., Saito, Y., Yoshida, M., Noda, H., Maeda, M., and Ito, K., "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-Gap Photocathodes in Non-aqueous Electrolytes," J. Electroanal. Chem., 260, 335-345 (1989). https://doi.org/10.1016/0022-0728(89)87148-7
  102. Hinogami, R., Nakamura, Y., Yae, S., and Nakato, Y., "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Mo dification with Small Metal Particles," J. Phys. Chem. B, 102, 974-980 (1998). https://doi.org/10.1021/jp972663h
  103. Kaneco, S., Katsumata, H., Suzuki, T., and Ohta, K., "Photoelectrocatalytic Reduction of $CO_{2}$ in LiOH/Methanol at Metalmodified p-InP Electrodes," Appl. Catal. B, 64, 139-145 (2006). https://doi.org/10.1016/j.apcatb.2005.11.012
  104. Taniguchi, Y., Yoneyama, H., and Tamura, H., "Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether," Bull. Chem. Soc. Jpn., 55(7), 2034-2039 (1982). https://doi.org/10.1246/bcsj.55.2034
  105. Bockris, J. O., and Wass, J. C., "On the Photoelectrocatalytic Reduction of Carbon Dioxide," Mater. Chem. Phys., 22(3-4), 249-330 (1989). https://doi.org/10.1016/0254-0584(89)90001-1
  106. Parkinson, B. A., and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic $CO_{2}$ Reduction," Nature, 309, 148-149 (1984). https://doi.org/10.1038/309148a0
  107. Bradley, M. G., and Tysak, T., "p-Type Silicon Based Photoelectrochemical Cells for Optical Energy Conversion: Electrochemistry of Tetra-azomacrocyclic Metal Complexes at Illuminated," J. Electroanal. Chem., 135, 153-157 (1982). https://doi.org/10.1016/0022-0728(82)90012-2
  108. Beley, M., Collin, J.-P., Sauvage, J.-P., Petit, J.-P., and Chartier, P., "Photoassisted Electro-reduction of $CO_{2}$ on p-GaAs in the Presence of Ni $cyclam^{2+}$," J. Electroanal. Chem., 206, 333-339 (1986). https://doi.org/10.1016/0022-0728(86)90281-0
  109. Petit, J.-P., Chartier, P., Beley, M., and Deville, J.-P., "Molecular Catalysts in Photoelectrochemical Cells: Study of an Efficient System for the Selective Photoelectroreduction of $CO_{2}$: p-GaP or $p-GaAs/Ni(cyclam)^{2+}$, Aqueous Medium," J. Electroanal. Chem., 269, 267-281 (1989). https://doi.org/10.1016/0022-0728(89)85137-X
  110. Kumar, B., Smieja, J. M., and Kubiak, C. P., "Photoreduction of $CO_{2}$ on p-type Silicon using $Re(Bipy-But)(CO)_{3}Cl$: Photovoltages Exceeding 600 mV for the Selective Reduction of $CO_{2}$ to CO," J. Phys. Chem. C, 114, 14220-14223 (2010). https://doi.org/10.1021/jp105171b
  111. Barton, E. E., Rampulla, D. M., and Bocarsly, A. B., "Selective Solar-driven Reduction of $CO_{2}$ to Methanol using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130, 6342-6344 (2008). https://doi.org/10.1021/ja0776327
  112. Cabrera, C. R., and Abruna, H. D., "Electrocatalysis of $CO_{2}$ Reduction at Surface Modified Metallic and Semiconducting Electrodes," J. Electroanal. Chem., 209, 101-107 (1986). https://doi.org/10.1016/0022-0728(86)80189-9
  113. Arai, T., Sato, S., Uemura, K., Morikawa, T., Kajino, T., and Motohiro, T., "Photoelectrochemical Reduction of $CO_{2}$ in Water under Visible-light Irradiation by a p-Type InP Photocathode Modified with an Electropolymerized Ruthenium Complex," Chem. Commun., 46, 6944-6946 (2010). https://doi.org/10.1039/c0cc02061c

Cited by

  1. Systems Engineering-based Approach In Developing Concept Design Of Carbon Capture System vol.9, pp.2, 2013, https://doi.org/10.14248/JKOSSE.2013.9.2.023
  2. 용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향 vol.41, pp.11, 2017, https://doi.org/10.3795/ksme-b.2017.41.11.727
  3. CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구 vol.28, pp.1, 2012, https://doi.org/10.5322/jesi.2019.28.1.65