DOI QR코드

DOI QR Code

New Paradigm for Nanowastes Treatment

나노폐기물 처리의 새로운 패러다임

  • Umh, Ha-Nee (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Byoung-Cheun (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Kim, Young-Hun (Department of Chemical Engineering, Kwangwoon University)
  • 엄하늬 (광운대학교 화학공학과) ;
  • 이병천 (국립환경과학원 환경건강연구부) ;
  • 김영훈 (광운대학교 화학공학과)
  • Received : 2012.07.05
  • Accepted : 2012.07.30
  • Published : 2012.09.30

Abstract

Recent rapidly growth in nanotechnolgies is promised novel benefits through the exploitation of their unique industrial and biomedical applications. In addition, the production amount of these nanomaterials and nanoproducts has increased, and thus their uncontrolled release into the environment is anticipated to grow dramatically in future. Therefore, nanowaste streams must be effectively managed for sustainable nanotechnology. However, the effectiveness and capability of the current systems to handle nanowastes are yet to be established. In this review, we investigated several key topics for new paradigm of nanowaste treatment, (i) global and domestic production of nanomaterials and nanoproducts, (ii) definition and key resources of nanowaste, (iii) current and developing treatment method for nanowaste, and (iv) regulations for nanomaterials and nanoproducts.

최근 나노기술의 급격한 발전은 산업 및 바이오의약 등 다양한 분야에 새로운 활용 가능성을 제시하고 있다. 그러나 나노물질과 나노소비재의 연간 생산량이 증가하고 있어서, 의도하지 않은 환경 노출이 야기되고 있다. 따라서 지속적인 나노기술의 발전을 위해서도 나노폐기물에 관한 효과적인 관리가 필요하다. 현재까지는 나노폐기물을 효율적으로 처리할 수 있는 기존의 처리시설이 없는 실정이다. 이에 본 총설에서는 몇 가지 주제에 관하여 기술하고자 한다. 국내외의 나노물질 및 나노소비재 현황을 파악하고, 나노폐기물의 정의와 주요 발생원이 무엇인지 파악하였다. 또한 기존의 폐기물 처리시설로 나노 폐기물을 처리 가능한지를 살피고, 개발되고 있는 새로운 처리법을 조사하였다. 마지막으로 나노물질에 관한 환경 규제를 거론하고, 나노폐기물에 관한 책임 있는 관리에 관한 새로운 나노폐기물 패러다임을 제시하고자 하였다.

Keywords

References

  1. Park, E., Roh, J., Kim, Y., and Choi, K., "A Single Instillation of Amorphous Silica Nanoparticles Induced Inflammatory Responses and Tissue Damage Until Day 28 After Exposure," J. Health Sci., 57, 60-71 (2011). https://doi.org/10.1248/jhs.57.60
  2. Park, E., Kim, H., Kim, Y., and Choi, K., "Repeated-Dose Toxicity Attributed to Aluminum Nanoparticles Following 28- Day Oral Administration, Particularly on Gene Expression in Mouse Brain," Toxicol. Environ. Chem., 93, 110-119 (2011). https://doi.org/10.1080/02772248.2010.497006
  3. Park, E., Roh, J., Kim, Y., and Park, K., "Induction of Inflammatory Responses by Carbon Fullerene ($C_{60}$) in Cultured RAW264.7 Cells and in Intraperitoneally Injected Mice," Toxicol. Res., 26, 267-273 (2010). https://doi.org/10.5487/TR.2010.26.4.267
  4. Bubnoff, A., "Magic Nano Shows Industry Need for Standard Terminology," Solid State Technol., April (2006).
  5. Kim, J.-K., Kang, M.-G., Cho, H.-W., Han, J.-H., and Yang, J.-S., "Inhalation Toxicity Study of Carbon Black Nanoparticles in the Rat Model," Report of the Korea Occupational Safety and Health Agency (2010).
  6. http://www.mdtoday.co.kr/mdtoday/index.html?no=187480
  7. OECD, "Safe Mangement of Nanowaste," OECD Workshop, May 9, Munich, Germany (2012).
  8. http://en.wikipedia.org/wiki/Roy_Amara
  9. http://www.nanotechproject.org/inventories/consumer
  10. Musee, N., "Nanotechnology Risk Assessment from a Waste Management Perspective: Are the Current Tools Adequate?," Human Experi. Toxicol., 30, 820-835 (2011). https://doi.org/10.1177/0960327110384525
  11. Royal Society and Royal Academy of Engineering, "Nanoscience and Nanotechnologies: Opportunities and Uncertainties," RS Policy Document 19/04 (2004).
  12. Internal Report of the Environmental Health Research Department, National Institute of Environmental Research (2011).
  13. Hallock, M. F., Greenley, P., BiBerardinis, L., and Kallin, D., "Potential Risks of Nanomaterials and How to Safety Handle Materials of Uncertain Toxicity," J. Chem. Health Saf., 16, 16-23 (2009). https://doi.org/10.1016/j.jchas.2008.04.001
  14. OECD WPMN SG8, "Preliminary Analysis of Exposure Measurement and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials," ENV/JM/MONO6 (2009).
  15. Gottschalk, F., Nowack, B., and Gawlik, B., "Report on Exposure Scenarios and Release of Nanomaterials to the Environment," NANEX Work Package 5 (2010).
  16. Whiteley, C. M., Valle, M. D., Jones, K. C., and Sweetman, A. J., "Challegnes in Assessing the Environmental Fate and Exposure of Nano Silver," J. Phys. Confer. Series, 304, 012070 (2011). https://doi.org/10.1088/1742-6596/304/1/012070
  17. Royal Commission on Environmental Pollution, Report on Sep. (2008).
  18. Mueller, N. C., and Nowack, B., "Exposure Modeling of Engineered Nanoparticles in the Environment," Environ. Sci. Technol., 42, 4447-4453 (2008). https://doi.org/10.1021/es7029637
  19. Kiser, M. A., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J., and Hristovski, K., "Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants," Environ. Sci. Technol., 43, 6757-6763 (2009). https://doi.org/10.1021/es901102n
  20. Jarvie, H. P., Al-Obaidi, H., King, S. M., Bowes, M. J., Lawrence, M. J., Drake, A. F., Green, M. A., and Dobson, P. J., "Fate of Silica Nanoparticles in Simulated Primary Wastewater Treatment," Environ. Sci. Technol., 43, 8622-8628 (2009). https://doi.org/10.1021/es901399q
  21. Musee, N., "Nanowastes and the Environment: Potential New Waste Management Paradigm," Environ. Internation., 37, 112- 128 (2011).
  22. Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P. L., "Nanoparticles: Their Potential Toxicity, Waste and Environmental Management," Waste Manag., 29, 2587-2595 (2009). https://doi.org/10.1016/j.wasman.2009.04.001
  23. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z., Zhen, J., Lin, Z., and Wang, C., "Treatment of CrVI-Containing $Mg(OH)_{2}$ Nanowaste," Angew. Chem. Int. Ed., 47, 5619-5622 (2008). https://doi.org/10.1002/anie.200800172
  24. Den, W., and Huang, C., "Electrocoagulation for Removal of Silica Nanoparticles from Chemical-Mechanical-Planarization Wastewater," Colloids Surf. A, 254, 81-89 (2005). https://doi.org/10.1016/j.colsurfa.2004.11.026
  25. Chin, C.-J. M., Chen, P.-W., and Wang, L.-J., "Removal of Nanoparticles from CMP Wastewater by Magnetic Seeding Aggregation," Chemosphere, 63, 1809-1813 (2006). https://doi.org/10.1016/j.chemosphere.2005.09.035
  26. Yang, G. C. C., and Li, C.-J., "Electrofiltration of Silica Nanoparticle- Containing Wastewater Using Tubular Ceramic Membranes," Sep. Purif. Technol., 58, 159-165 (2007). https://doi.org/10.1016/j.seppur.2007.07.019
  27. Pan, J. R., Uang, C., Jiang, W., and Chen, C., "Treatment of Wastewater Containing Nano-scale Silica Particles by Dead-end Microfiltration: Evaluation of Pretreatment Methods," Desalination, 179, 31-40 (2005). https://doi.org/10.1016/j.desal.2004.11.053
  28. Liang, H.-W., Wang, L., Chen, P.-Y., Lin, H.-T., Chen, L. F., He, D., and Yu, S.-H., "Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles," Adv. Mater., 22, 4691-4695 (2010). https://doi.org/10.1002/adma.201001863

Cited by

  1. Importance-Performance Analysis for Nano-Safety Researches vol.19, pp.4, 2013, https://doi.org/10.7464/ksct.2013.19.4.459
  2. Nanowaste Treatment via Incineration vol.22, pp.1, 2016, https://doi.org/10.7464/ksct.2016.22.1.001
  3. Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities vol.35, pp.7, 2018, https://doi.org/10.9786/kswm.2018.35.7.670