• Title/Summary/Keyword: 이방성 강도와 변위

Search Result 15, Processing Time 0.019 seconds

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading (주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구)

  • 이희석;박연준;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.350-363
    • /
    • 1999
  • The precision cyclic shear test system was established to investigate the mechanical characteristics of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for saw-cut joints and artificial rough rock joints using Hwangdeung granite and Yeosan marble. Surface roughness and aperture characteristics of specimens were examined by measuring surface topography using the laser profilometer. Peak shear strength, phase difference during loading and unloading, and anisotropic shear behavior were investigated throughout the cyclic shear test results. These features and their subsequent variations in each loading cycle are significantly dependent upon the second order asperities and the strength of intact rock. It was observed that degradation of asperities for rough rock joints under cyclic shear loading followed the exponential degradation laws of asperity angle and that the mechanism for asperity degradation would be different depending upon the normal stress level, roughness of joint surface and the loading stage.

  • PDF