• Title/Summary/Keyword: 이방성매질

Search Result 53, Processing Time 0.022 seconds

Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap (공기 갭을 갖는 일축성 매질 위의 마이크로스트립 패치 안테나의 공진 주파수)

  • 윤중한;이상목;안규철;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1759-1765
    • /
    • 2000
  • 공기 갭을 갖는 일축성 기판위에 마이크로 패치 안테나의 공진 주파수가 full-wave approach와 모멘트 계산법을 이용하여 연구되었다. 일축성 매질내의 구성관계식을 통하여 제안된 구조에서의 파수영역 다이애딕 그린 함수를 유도하였으며 이 결과로부터 전계 적분 방정식을 수식화하였다. 갤러킨 모멘트법을 사용하여 전계 적분 방정식을 이산화 하였으며 기저함수의 선택은 수치 해석적 수렴을 고려하여 패치 위의 실제 전류밀도와 가장 유사한 형태인 정현적 기저함수를 선택하였다. 전사모의 실험 결과의 타당성을 검증하기 위해서 기존의 결과와 비교하여 일치된 결과를 얻었다. 공기 갭의 두께와 패치 길이, 이방성 비의 변화에 따른 공진 주파수가 제시되고 분석되었다.

  • PDF

Analysis and Simulation of Ultrasonic Wave Propagation and Scattering in Unidirectional Fiber Composites (단일방향 섬유 복합재료 내의 초음파 전파 및 산란 현상의 해석과 시뮬레이션)

  • Lee, Choon-Jae;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • Ultrasonic testing of composite materials is much more difficult than that of isotropic materials, because of the beam skew phenomenon caused by their elastic anisotropy. An established analytical method exists for elastic wave propagation in anisotropic media as a result of previous research efforts. Yet, due to the complexity of the analytical method, solution of real problems must resort to the numerical method. In this work, analytical solutions have first been obtained for the wavefield due to a point source in a unidirectional fiber-reinforced composite, which may be modeled as transversely isotropic. Then, the corresponding numerical solutions have been obtained using the mass-spring lattice model(MSLM). The two solutions have agreed well with each other. Other problems such as reflection from free boundaries and scattering from cracks have also been solved numerically, and the results have been investigated from the viewpoint of wave mechanics. The numerical model whose validity has been confirmed by this work will be of great use in simulating ultrasonic testing of composite materials.

  • PDF

Light Propagation in a Strained and Heated Crystal (변형 및 온도 변화 존재시 단결정에서의 빛의 거동)

  • 조동원;김기수
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1994
  • Light propagation in an anisotropic crystal in the presence of strains and temperature change is investigated. This phenomenon appears in an embedded optical films sensor inside the structure or in an optical on the substrate for optical devices. The refractive indices which represent the light propagation in an anisotopic crystal are calculated and the changes of these refractive indices in the presence of strains and tepmerature change are also calculated. The calculations for the light propagation. In an isotropic medium with the simplified model are performed and the results are compared with devious investigators.

  • PDF

Investigation on lamb wave propagation in silicon wafer using large aperture line-focused transducer (대구경 선집속 탐촉자를 이용한 실리콘 웨이퍼에서의 램파 전파 특성 분석)

  • Chung, Yoonjae;Yang, Seung Soo;Yu, Minjae;Kim, Young H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.174-180
    • /
    • 2018
  • In this study, the propagation characteristics of Lamb waves in anisotropic silicon wafers of (100) and (111) direction were investigated by PVDF (Polyvinylidene Fluoride) line-focused transducer. The modified V(f,z) method was used because the Lamb waves are dispersive. For confirming the anisotropy, a line-focused transducer was used and the silicon wafer was rotated 180 degrees at intervals of 1 degree. As a result, $A_0$ and $S_0$ modes were observed. The speed of $S_0$ mode according to propagation direction showed anisotropy which is associated with the crystal structure, and the speed of $A_0$ mode was isotropic. The result is consistent with the crystal structure of silicon and the mechanism of vibration of each Lamb wave modes.

A Study on Anisotropic Reinforcing Mechanism of Umbrella Arch Reinforcement Method in Tunnelling (터널 보강용 강관 다단 그라우팅 공법의 이방성 보강 메카니즘 규명에 관한 연구)

  • 배규진;신휴성;최용기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.245-259
    • /
    • 2003
  • This paper deals with an Umbrealla Arch Reinforcement Method (UARM) in tunnelling. It is known that the mechanism of the reinforcement system is too complex to be simulated in existent finite element (FE) frameworks when considering its complex geometry of pipe arrangements and contribution of each component of the reinforcement to reinforcing effect. In this study a 3-D elastoplastic FE procedure is, therefore, proposed by introducing homogenisation technique, which is used to define mathematically elastic as well as elastoplastic characteristics of a reinforced ground material as a composite. A number of practical suggestions are addressed considering staged constructions of tunnels. For illustrative purposes, a series of parametric studies are undertaken and anisotropic characteristics of the reinforced ground as well as effects of the reinforcement on tunnel convergences are investigated. It is found that the reinforced ground material defined in homogenisation framework has its mechanical characteristics reasonably representing inherent geometrical and quantitative characteristics of each of constituents.

A New Method for Characterization of Composites by Ultrasonics (초음파를 이용한 복합재료 기계적 특성값의 새로운 특정 방법)

  • 장필성;전홍재
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • A new ultrasonic test method is proposed to obtain elastic constants of unidirectional composite materials nondestructively. In the proposed test method, only longitudinal transducers are used to measure wave velocities by through-transmission method. An aluminum wedge and a flat aluminum rectangular block are placed on each side of the test specimen. Oblique incident longitudinal wave is transmitted from a wedge to the specimen and the mode conversions are occurred sequentially at two interfaces between the specimen and aluminium. Measuring wave velocities converted to longitudinal waves in the rectangular block give all information to determine elastic constants of the composites. In order to determine shear stiffness coefficients, transverse wave velocity is measured indirectly from received longitudinal wave. Effects of anisotropy on waves are also considered in this study.

  • PDF

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

A Study on Applicability of Equivalent Continuum Flow Model in DFN Media (DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구)

  • Lee, Dahye;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 2017
  • The correlation analysis between the results obtained from DFN flow model and equivalent continuum flow model were conducted on total of 72 DFN blocks having various fracture geometry and domain size. A strong linear relation seems to exist between the two approaches under condition that normalized relative error for continuum behavior (ER) is less than 0.2, and the results from both methods are found to almost identical. To explore the field applicability of equivalent continuum flow model in DFN media, a total of 48 numerical schemes related to inflow of underground circular openings were implemented under various DFN configurations. The equivalent continuum flow model in DFN media with a constant hydraulic aperture was evaluated as valid. However, as the anisotropy increases due to variation of the hydraulic aperture, the results are likely to be overestimated compare to the DFN flow model.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

Effect of Ultrasonic Waves on Fiber Orientation in CFRP Laminated Composites

  • Park, Je-Woong;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David;Kim, Sun-Kyu;Yang, In-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.255-257
    • /
    • 2007
  • 최근에는 탄소섬유복합재료(CFRP)는 우주 및 민간 항공산업분야에 널리 활용이 되고 있는 실정이다. CFRP 복합재는 적층구성에 따라 기계물성치 및 강성에 크게 영향이 미치므로 가장 대표적인 직교이방성 적층재의 적층배향을 비파괴 탐상하는 것은 중요하다. 본 연구에서는 CFRP 적층재의 섬유배향에 가장 민감한 초음파 전단파를 활용하기 위해 2개의 종파 초음탐촉자를 이용하는 새로운 기법을 제안하였다. 또한 초음파 전단파를 발생하기 위해서는 탐촉자 밑면에 접촉매질인 태운꿀을 사용하는데 초음파시험하는 도중에 물성치중에 하나인 즉 점성이 상당히 변하게 된다. 이러한 문제를 해결하기 위해 2개의 종파용 초음파탐촉자를 이용해 전단파를 발생시킴으로써 접촉매질문제를 상당히 경감할 수 있는 것으로 나타났으며 여기에서 발생한 전단파가 CFRP 복합적층판의 섬유배향에 매우 민감함을 알 수 있었다.