• 제목/요약/키워드: 이미지 피라미드

검색결과 24건 처리시간 0.028초

컬러 모폴로지를 이용한 컬러 화상의 특징 추출에 관한 연구

  • 남태희
    • 한국컴퓨터정보학회지
    • /
    • 제8권2호
    • /
    • pp.9-14
    • /
    • 2001
  • 본 논문에서는 새로운 칼라 모폴로지 피라미드를 제안하고. 제안된 칼라 모폴로지의 유용성 평가를 위해 이미지에서 중요한 에지를 검출하고자 한다. 여기서 이미지 피라미드 구조는 최초 컬러 이미지의 반복적인 필터링과 샘플링의 순차적인 실험 과정의 단계를 본 논문에서 제안한 CMP를 이용하여 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하여. 효율적인 특징 추출의 유효성을 검증하고자 한다.

  • PDF

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

컬리 모폴로지 피라미드를 이용한 컬러 이미지의 에지 검출 (Edge Detection in Color Image Using Color Morphology Pyramid)

  • 남태희;이석기
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.65-69
    • /
    • 2001
  • 컬러 이미지는 Gray 이미지와는 다르게 색상으로 표현하는 정보가 많이 포함되어있으며 이미지 내 각 픽셀의 색상과 픽셀 값이 적녹청(RGB) 3개 값의 조합으로 결정된다.본 논문에서는 새로운 칼라 모폴로지 피라미드를 제안하고. 제안된 칼라 모폴고지의 유용성평가를 위해 이미지에서 기본적이고도 중요한 에지 검출을 보인다. 이미지 피라미드 구조는최초 이미지의 반복적인 필터링과 샘플링에 의해 면적비가 2$^{-1}$(ι= 1, 2, . . . ,N)이 되는 순차적 이미지 계열이다. 본 방법에서는 CMP를 이용하여 RGB, CMY, XYZ 등 컬러공간에서 연속적인 필터링 처리로 불필요한 크기의 물체 및 잡음을 제거하고, 다운샘플링과정으로 해상도를 낮춰준다. 생성된 CMP에서, 인접 레벨 이미지간에는 이웃한 픽셀 벡터간의 상대거리를 이용한 연결식이 사용되어 새 레벨의 이미지를 생성하며 이를 에지로 검출한다.

크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색 (Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature)

  • 유승훈;김현수;이석룡;임명관;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권6호
    • /
    • pp.446-454
    • /
    • 2009
  • 다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.

왈쉬변환을 이용한 손상된 지문의 결분석 (Analyzing texture of corrupted Fingerprint using Walsh transform)

  • 손경두;허정연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.304-306
    • /
    • 2003
  • 본 논문은 손상되지 않은 지문과 손상된 지문에 대해 전처리 및 3 레벨 가우스 피라미드(Gaussian pyramid)변환과 왈쉬(Walsh)변환을 하고, 출력되는 결(texture) 정보를 평활화 및 이진화를하여 해밍거리(Hamming Distance)를 계산하였다. 여기서 얻은 결 정보에 대한 해밍거리 변화율은 인식을 위한 매칭 변수로 사용하였다. 이러한 비교를 위해 이미지를 전처리하여 잡음을 제거하고, 대비를 개선한 후 각 이미지를 이진화 이미지로 만든 다음 세선화 처리를 하였다. 3 레벨 가우스 피라미드 변환은 이미지의 크기를 1/8로 축소하며, 해밍거리 변화율은 타인 수락율(FAR: False Acceptance Ratio)과 본인 거부율 (FRR: False Rejection Ratio)계산에 사용하였다. 그 결과 손상된 동일 지문에 대한 본인 거부율은 -20% 내외이었으며, 타인수락율은 -50%가 되어 지문이 일부 손상되었어도 결 무늬에 대한 해밍거리는 인식의 특성 벡터로 사용할 수 있음을 알 수 있다.

  • PDF

쿼드 어휘 트리를 이용한 장소 인식 방법 (Place Recognition Method Using Quad Vocabulary Tree)

  • 박서영;홍현기
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.569-577
    • /
    • 2016
  • 위치 기반 서비스(LBS; Location Based Service)를 위한 장소 인식 기술은 사용자 중심의 서비스를 위한 중요 기술 중 하나이다. 이미지 특징을 이용한 장소 인식 방법 중에서 FLANN(Fast Library for performing Approximate Nearest Neighbor)의 이미지 어휘 트리를 이용하면 처리 속도가 빠르지만 가려짐 등으로 인해 인식의 정확도가 높지 않다. 본 논문에서는 SURF(Speeded Up Robust Features)를 사용한 쿼드(quad) 어휘 트리 기반의 장소 인식 방법을 제안한다. 학습 단계에서 데이터베이스 이미지를 세 단계의 공간 피라미드로 표현하고 각 영역에 대한 어휘 트리를 구성한다. 질의 이미지도 세 단계의 공간 피라미드로 표현하고 각 단계별로 어휘 트리 기반 인식을 수행한다. 또한 매칭된 특징 간의 호모그래피(homography) 관계를 측정하고 이를 만족하는 영역의 개수를 고려함으로써 최종 인식의 성능을 향상시켰다.

이미지 피라미드를 이용한 큰 객체 실시간 탐지 (Real-Time Detection of Large Objects using Image Pyramid)

  • 주권일;손승욱;안한세;정용화;박대희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.709-712
    • /
    • 2020
  • 영상 처리 응용을 위해 개발된 대부분의 CNN 기반 객체 탐지 기법은 mAP 를 올리기 위해 작은 객체 탐지에 더 주력하는 경향이 있다. 본 연구에서는 이미지 피라미드를 통한 서로 다른 해상도의 탐지 결과를 앙상블을 하여 작은 객체의 탐지 성능은 유지하면서 큰 객체의 탐지 성능을 향상시키고자 한다. 또한, 기존 NMS 방식의 문제점을 파악하고 새로운 NMS 방식인 G-NMS 를 제안한다. COCO 데이터로 실험 결과 서로 다른 해상도의 탐지 결과 앙상블을 통하여 30fps 이상의 실시간 탐지를 만족하면서 큰 객체에 대한 AP 가 0.5~1.5% 상승되었음을 확인하였다. 제안한 G-NMS 방식 적용시 큰 객체에 대한 AR 이 2.6~3.8% 상승되었으며, 작은 객체를 포함한 전체 mAP 가 0.7~0.9% 상승되었음을 확인하였다.

적응적 쌍선형 보간 이미지 피라미드를 이용한 DPM 기반 고속 객체 인식 기법 (Fast Object Detection with DPM using Adaptive Bilinear Interpolated Image Pyramid)

  • 한규동;김응태
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.362-373
    • /
    • 2020
  • 최근 자율 주행 자동차와 지능형 CCTV에 대한 관심이 높아지면서 효율적인 객체 검출의 중요성은 필수적인 요소이다. 본 논문의 기반이 되는 DPM(Deformable Part Models)은 객체에 대한 변형 가능한 부분의 혼합을 사용하여 가변적인 객체를 나타낼 수 있는 대표적인 검출기로 다양한 분야에서 많이 연구 되고 있다. 객체 모델의 파트 모양과 구성을 잡아내는 기법으로 높은 검출 성능을 보여주지만 복잡한 알고리즘으로 인해 실제 어플리케이션에서 사용하기에는 한계가 있다. 이를 개선하기 위해 본 논문에서는 DPM에서 많은 연산을 필요로 하는 이미지 특징 피라미드(feature pyramid)를 구성하는 과정 대신, 특정 스케일에서 구해진 소수의 특징(feature) 맵에 적응적인 쌍선형(bilinear) 보간법을 이용하여 이미지 특징 피라미드를 재구성해 연산 속도를 줄이는 방법을 제안한다. 모의실험 결과, 제안된 방식의 DPM은 기존 DPM 방식 대비 검출 성능은 2.82%가 낮아졌지만 평균 연산 시간 10%를 향상시킴을 알 수 있었다.

Hierarchical Priority Belief Propagation 을 이용한 이미지 완성 (Image Completion Using Hierarchical Priority Belief Propagation)

  • 김무성;강행봉
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.256-261
    • /
    • 2007
  • 본 논문은 이미지 완성(Image Completion)을 위한 근사적 에너지 최적화 알고리즘을 제안한다. 이미지 완성이란 이미지의 특정영역이 지워진 상태에서, 그 지워진 부분을 나머지 부분과 시각적으로 어울리도록 완성시키는 기법을 말한다. 본 논문에서 이미지 완성은 유사-확률적(pseudo-probabilistic) 시스템인 Markov Random Field로 모델링된다. MRF로 모델링된 이미지 완성 시스템에서 사후 확률(posterior probability)을 최대로 만드는 MAP(Maximum A Posterior) 문제는 결국 시스템의 전체 에너지를 낮추는 에너지 최적화 문제와 동일하다. 본 논문에서는 MRF의 최적화 알고리즘들 중에서 Belief Propagation 알고리즘을 이용한다. BP 알고리즘이 이미지 완성 분야에 적용될 때 다음 두 가지가 계산시간을 증가시키는 요인이 된다. 첫 번째는 완성시킬 영역이 넓어 MRF를 구성하는 정점의 수가 증가할 때이다. 두 번째는 비교할 후보 이미지 조각의 수가 증가할 때이다. 기존에 제안된 Priority-Belief Propagation 알고리즘은 우선순위가 높은 정점부터 메시지를 전파하고 불필요한 후보 이미지 조각의 수를 제거함으로써 이를 해결하였다. 하지만 우선순위를 정점에 할당하기 위한 최초 메시지 전파의 경우 Belief Propagation의 단점은 그대로 남아있다. 이를 개선하기 위해 본 논문에서는 이미지 완성을 위한 MRF 모델을 피라미드 구조와 같이 층위로 나누어 정점의 수를 줄이고, 계층적으로 메시지를 전파하여 시스템의 적합성(fitness)을 정교화 해나가는 Hierarchical Priority Belief Propagation 알고리즘을 제안한다.

  • PDF

스포츠 이미지 분류를 위한 희소 부호화 기법을 이용한 공간 피라미드 매칭 LDA 모델 (A Spatial Pyramid Matching LDA Model using Sparse Coding for Classification of Sports Scene Images)

  • 전진;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.35-36
    • /
    • 2016
  • 본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.

  • PDF