이 논문은 웹 문서의 이미지 캡션 추출을 위한 방법으로서 이미지와 캡션의 위치적 연관성과 본문과 캡션의 어휘적 유사성을 동시에 고려한 방법을 제안한다. 이미지와 캡션의 위치적 연관성은 거리와 방향 관점에서 캡션이 이미지에 상대적으로 어떻게 위치하고 있는지를 나타내며, 본문과 캡션의 어휘적 유사성은 이미지를 설명하고 있는 캡션이 어휘적으로 본문과 어느 정도 유사한지를 나타낸다. 이미지와 캡션을 독립적으로 고려한 자질만을 사용한 캡션 추출 방법을 기저 방법으로 놓고 제안하는 방법들을 추가적인 자질로 사용하여 캡션을 추출하였을 때, 캡션 추출 정확률과 캡션 추출 재현율이 모두 향상되며, 캡션 추출 F-measure가 약 28% 향상되었다.
기존의 웹 이미지 검색 시스템들은 웹 페이지에 포함된 텍스트들의 출현빈도, 태그유형 등을 고려해 각 키워드들의 중요도를 평가하고 이를 이용해 이미지의 캡션을 결정한다. 하지만 텍스트 정보만으로 캡션을 결정할 경우, 키워드와 이미지 사이의 관련성을 평가할 수 없어 부적절한 캡션의 배제가 어렵고, 사람의 인지와 맞지 않는 캡션이 추출되는 문제점이 있다. 본 논문에서는 기존의 웹 이미지 마이닝 방법을 통해 웹 페이지로부터 캡션 후보 키워드를 추출하고, 자동 이미지 주석 방법을 통해 이미지의 개념 부류 키워드를 결정한 후, 두 종류의 키워드를 결할하여 캡션을 선택한다. 가능한 결합 방법으로는 키워드 병합 방법, 공통 키워드 추출 방법, 개념 부류 필터링 방범 캡션 후보 필터링 방법 등이 있다. 실험에 의하면 키워드 병합 방법은 높은 재현율을 가져 이미지에 대한 다양한 주석이 가능하고 공통 키워드 추출 방법과 개넘 부류 키워드 필터링 방법은 정확률이 높아 이미지에 대한 정확한 기술이 가능하다. 특히, 캡션 후보 키워드 필터링 방법은 기존의 방법에 비해 우수한 재현율과 정확률을 가지므로 기존의 방법에 비해 적은 개수의 캡션으로도 이미지를 정확하게 기술할 수 있으며 일반적인 웹 이미지 검색 시스템에 적용할 경우 효과적인 방법이다.
청각장애인이 PC환경에서 영화, 방송, 애니메이션 등의 동영상 콘텐츠를 이용할 때 장애의 정도에 따라 콘텐츠의 접근성에 있어서 시각적 수용 이외의 부분적 장애가 발생한다. 이러한 장애의 극복을 위해 수화 애니메이션이나 독화 교육과 같은 청각장애인의 정보 접근성 향상을 위한 콘텐츠와 기술이 개발된 사례가 있었으나 다소 한계점을 가지고 있다. 따라서 본 논문에서는 현대 뉴미디어 예술 작품의 예술적 표현 방법을 구성요소로서 추출하여, 기술과 감성의 조화가 어우러진 독창적인 콘텐츠를 생산할 수 있는 기술을 개발함으로써 PC환경에서 청각장애인의 동영상 콘텐츠에 대한 접근성 향상 방법을 추출하고, 실질적으로 청각적 효과의 시각적 변환 인터페이스 개발 및 이미지 캡션 생성 소프트웨어 개발을 통해 청각장애인의 동영상 콘텐츠 사용성을 극대화시킬 수 있는 방법론을 제시하고자 한다. 본 논문에서는 첫째, 청각장애인의 동영상 콘텐츠 접근성 분석, 둘째, 미디어아트 작품의 선별적 분석 및 유동요소 추출, 셋째, 인터페이스 및 콘텐츠 제작의 순서로 단계별 방법론을 제시하고 있다. 이 세번 째 단계에서 이미지 캡션 생성 소프트웨어가 개발되고, 비트맵 아이콘 형태의 이미지 캡션 콘텐츠가 생성된다. 개발한 이미지 캡션 생성 소프트웨어는 사용성에 입각한 일상의 언어적 요소와 예술 작품으로부터 추출한 청각 요소의 시각적요소로의 전환을 위한 인터페이스인 것이다. 이러한 기술의 개발은 기술적 측면으로는 청각장애인의 다양한 웹콘텐츠 접근 장애를 개선하는 독창적인 인터페이스 추출 환경을 확립하여 응용영역을 확대하고, 공학적으로 단언된 기술 영역을 콘텐츠 개발 기술이라는 새로운 영역으로 확장함으로써 간학제적 시도를 통한 기술영역을 유기적으로 확대하며, 문자와 오디오를 이미지와 시각적 효과로 전환하여 다각적인 미디어의 교차 활용 방안을 제시하여 콘텐츠를 형상화시키는 기술을 활성화 시키는 효과를 거둘 수 있다. 또한 청각장애인의 접근성 개선이라는 한정된 영역을 뛰어넘어 국가간 언어적인 장벽을 초월할 수 있는 다각적인 부가 동영상 콘텐츠에 대한 시도, 접근, 생산을 통해 글로벌 시대에 부응하는 새로운 방법론으로 발전 할 수 있다.
본 논문에서는 이미지 캡션 생성과 모델 전이에 효과적인 심층 신경망 모델을 제시한다. 본 모델은 멀티 모달 순환 신경망 모델의 하나로서, 이미지로부터 시각 정보를 추출하는 컨볼루션 신경망 층, 각 단어를 저차원의 특징으로 변환하는 임베딩 층, 캡션 문장 구조를 학습하는 순환 신경망 층, 시각 정보와 언어 정보를 결합하는 멀티 모달 층 등 총 5 개의 계층들로 구성된다. 특히 본 모델에서는 시퀀스 패턴 학습과 모델 전이에 우수한 LSTM 유닛을 이용하여 순환 신경망 층을 구성하고, 컨볼루션 신경망 층의 출력을 임베딩 층뿐만 아니라 멀티 모달 층에도 연결함으로써, 캡션 문장 생성을 위한 매 단계마다 이미지의 시각 정보를 이용할 수 있는 연결 구조를 가진다. Flickr8k, Flickr30k, MSCOCO 등의 공개 데이터 집합들을 이용한 다양한 비교 실험을 통해, 캡션의 정확도와 모델 전이의 효과 면에서 본 논문에서 제시한 멀티 모달 순환 신경망 모델의 우수성을 입증하였다.
본 논문에서는 트랜스포머를 사용한 이미지 캡셔닝 방법과 비디오 캡셔닝 방법을 제안한다. 트랜스포머의 입력으로 사전 학습된 이미지 클래스 분류모델을 거쳐 추출된 특징을 트랜스포머의 입력으로 넣고 인코더-디코더를 통해 이미지와 비디오의 캡션을 출력한다. 이미지 캡셔닝의 경우 한글 데이터 세트를 학습하여 한글 캡션을 출력하도록 학습하였으며 비디오 캡셔닝의 경우 MSVD 데이터 세트를 학습하여 학습 후 출력 캡션의 성능을 다른 비디오 캡셔닝 모델의 성능과 비교하였다. 비디오 캡셔닝에서 성능향상을 위해 트랜스포머의 디코더를 변형한 GPT-2를 사용하였을 때 BLEU-1 점수가 트랜스포머의 경우 0.62, GPT-2의 경우 0.80으로 성능이 향상됨을 확인하였다
본 논문에서는 이미지 캡션 생성과 모델 전이에 효과적인 심층 신경망 모델을 제시한다. 본 모델은 멀티 모달 순환 신경망 모델의 하나로서, 이미지로부터 시각 정보를 추출하는 컨볼루션 신경망 층, 각 단어를 저차원의 특징으로 변환하는 임베딩 층, 캡션 문장 구조를 학습하는 순환 신경망 층, 시각 정보와 언어 정보를 결합하는 멀티 모달 층 등 총 5 개의 계층들로 구성된다. 특히 본 모델에서는 시퀀스 패턴 학습과 모델 전이에 우수한 LSTM 유닛을 이용하여 순환 신경망 층을 구성하며, 캡션 문장 생성을 위한 매 순환 단계마다 이미지의 시각 정보를 이용할 수 있도록 컨볼루션 신경망 층의 출력을 순환 신경망 층의 초기 상태뿐만 아니라 멀티 모달 층의 입력에도 연결하는 구조를 가진다. Flickr8k, Flickr30k, MSCOCO 등의 공개 데이터 집합들을 이용한 다양한 비교 실험들을 통해, 캡션의 정확도와 모델 전이의 효과 면에서 본 논문에서 제시한 멀티 모달 순환 신경망 모델의 높은 성능을 확인할 수 있었다.
오늘날 저작권 관련 산업이 사회, 경제적으로 큰 영향을 미치는 대규모 산업으로 성장하였음에도 불구하고 저작물에 대한 소유권 및 저작권에 대한 문제가 끊임없이 발생하고 있으며 특히 이미지 저작권과 관련된 연구는 거의 진행되지 않는 상태이다. 본 연구에서는 기존의 문서 영상처리 기술과 딥 러닝 기술을 융합하여 교육용 도서 영상에서의 객체 자동 추출 및 분류 기술 시스템을 제안한다. 제안된 기술은 먼저 잡음을 제거한 후, 시각적 주의(visual attention) 기반 영역 추출 과정을 수행한다. 추출된 영역을 기반으로 블록화 작업을 수행하고, 각 블록을 그림인지 아니면 문자 영역인지를 분류한다. 마지막으로 추출된 그림 영역 주위를 검색하여 캡션 영역을 추출한다. 본 연구에서 진행한 성능 평가 결과, 그림 영역은 최대 97% 정확도를 보이며, 그림 및 캡션 영역 추출에 있어서는 평균 83%의 정확도를 보여 준다.
최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.
대부분의 데이타베이스 시스템에서, 이미지는 캡션(caption), 주석(annotation), 속성(attribute)과 같이 그 이미지와 관련된 텍스트를 이용하여 간접적으로 인덱스 되었다. 그러나, 이미지에 포함된 정보를 직접적으로 사용하여 내용에 기반한 이미 지의 저장과 검색을 지원하는 이미지 데이타베이스 시스템의 요구가 점점 증가하고 있다. 내용에 기반한 몇몇 인덱싱 방법들이 있는데 그중에서 Petrakis는 이미지를 구성하는 오브젝트들의 공간관계와 속성을 고려한 이미지 인덱싱 방법을 제안했다. 이것은'2-D string'에 기반한 인덱싱 연구의 확장인데. 이 방법은 많은 저장공간을 필요로 하며 융통성이 부족하다. 본 논문은 페이징 기법을 사용하는 kd-trr를 이용한 인덱스 화일구조를 제안한다. 그리고 정규화 과정을 사용해서 실제 이미지로부터 키를 추출하는 예를 보이고 시뮬레이션을 통해 비교하였다. 실험 결과는 제안된 방법이 훨씬 적은 저장공간을 요구하고, 융통성면에서 개선이 되었음을 보여준다.
동영상 정보는 자료의 양이 방대하고 다양하여 압축된 형태로 저장하고 검색하는 것이 매우 중요하다. 본 논문에서는 동영상 문서의 구조를 추출하고 동영상 스트림의 인데싱에 대한 의미를 부여할 수 있는 일반적인 데이터 모델을 제시하고, 이 모델을 이용하여 MPEG-2로 압축된 동영상 자료를 데이터베이스에 저장하고 검색하는 MPEG-2 압축 동영상 정보 관리 시스템(CVIMS, Compressed Video Information Management System)을 제안한다. CVIMS는 MPEG-2 파일에서 I-프레임들을 추출하고, 그 중에서 키 프레임(대표 이미지)을 선택한 후, 선택된 키 프레임에 대한 축소그림(thumbnail)과 캡션 및 그림 설명 정보를 데이터베이스에 저장한다. 그리고 데이터베이스에 저장된 MPEG-2 동영상을 질의어나 키 프레임을 통해 검색한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.