• Title/Summary/Keyword: 이미지 캡션 추출

Search Result 10, Processing Time 0.025 seconds

Web Image Caption Extraction using Positional Relation and Lexical Similarity (위치적 연관성과 어휘적 유사성을 이용한 웹 이미지 캡션 추출)

  • Lee, Hyoung-Gyu;Kim, Min-Jeong;Hong, Gum-Won;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2009
  • In this paper, we propose a new web image caption extraction method considering the positional relation between a caption and an image and the lexical similarity between a caption and the main text containing the caption. The positional relation between a caption and an image represents how the caption is located with respect to the distance and the direction of the corresponding image. The lexical similarity between a caption and the main text indicates how likely the main text generates the caption of the image. Compared with previous image caption extraction approaches which only utilize the independent features of image and captions, the proposed approach can improve caption extraction recall rate, precision rate and 28% F-measure by including additional features of positional relation and lexical similarity.

An Efficient Web Image Caption Extraction Method based on Textual and Visual Information (텍스트 정보와 시각 특징 정보를 이용한 효과적인 웹 이미지 캡션 추출 방법)

  • Hwang Ji-Ik;Park Joo-Hyoun;Nang Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.346-348
    • /
    • 2006
  • 기존의 웹 이미지 검색 시스템들은 웹 페이지에 포함된 텍스트들의 출현빈도, 태그유형 등을 고려해 각 키워드들의 중요도를 평가하고 이를 이용해 이미지의 캡션을 결정한다. 하지만 텍스트 정보만으로 캡션을 결정할 경우, 키워드와 이미지 사이의 관련성을 평가할 수 없어 부적절한 캡션의 배제가 어렵고, 사람의 인지와 맞지 않는 캡션이 추출되는 문제점이 있다. 본 논문에서는 기존의 웹 이미지 마이닝 방법을 통해 웹 페이지로부터 캡션 후보 키워드를 추출하고, 자동 이미지 주석 방법을 통해 이미지의 개념 부류 키워드를 결정한 후, 두 종류의 키워드를 결할하여 캡션을 선택한다. 가능한 결합 방법으로는 키워드 병합 방법, 공통 키워드 추출 방법, 개념 부류 필터링 방범 캡션 후보 필터링 방법 등이 있다. 실험에 의하면 키워드 병합 방법은 높은 재현율을 가져 이미지에 대한 다양한 주석이 가능하고 공통 키워드 추출 방법과 개넘 부류 키워드 필터링 방법은 정확률이 높아 이미지에 대한 정확한 기술이 가능하다. 특히, 캡션 후보 키워드 필터링 방법은 기존의 방법에 비해 우수한 재현율과 정확률을 가지므로 기존의 방법에 비해 적은 개수의 캡션으로도 이미지를 정확하게 기술할 수 있으며 일반적인 웹 이미지 검색 시스템에 적용할 경우 효과적인 방법이다.

  • PDF

The Development of Image Caption Generating Software for Auditory Disabled (청각장애인을 위한 동영상 이미지캡션 생성 소프트웨어 개발)

  • Lim, Kyung-Ho;Yoon, Joon-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1069-1074
    • /
    • 2007
  • 청각장애인이 PC환경에서 영화, 방송, 애니메이션 등의 동영상 콘텐츠를 이용할 때 장애의 정도에 따라 콘텐츠의 접근성에 있어서 시각적 수용 이외의 부분적 장애가 발생한다. 이러한 장애의 극복을 위해 수화 애니메이션이나 독화 교육과 같은 청각장애인의 정보 접근성 향상을 위한 콘텐츠와 기술이 개발된 사례가 있었으나 다소 한계점을 가지고 있다. 따라서 본 논문에서는 현대 뉴미디어 예술 작품의 예술적 표현 방법을 구성요소로서 추출하여, 기술과 감성의 조화가 어우러진 독창적인 콘텐츠를 생산할 수 있는 기술을 개발함으로써 PC환경에서 청각장애인의 동영상 콘텐츠에 대한 접근성 향상 방법을 추출하고, 실질적으로 청각적 효과의 시각적 변환 인터페이스 개발 및 이미지 캡션 생성 소프트웨어 개발을 통해 청각장애인의 동영상 콘텐츠 사용성을 극대화시킬 수 있는 방법론을 제시하고자 한다. 본 논문에서는 첫째, 청각장애인의 동영상 콘텐츠 접근성 분석, 둘째, 미디어아트 작품의 선별적 분석 및 유동요소 추출, 셋째, 인터페이스 및 콘텐츠 제작의 순서로 단계별 방법론을 제시하고 있다. 이 세번 째 단계에서 이미지 캡션 생성 소프트웨어가 개발되고, 비트맵 아이콘 형태의 이미지 캡션 콘텐츠가 생성된다. 개발한 이미지 캡션 생성 소프트웨어는 사용성에 입각한 일상의 언어적 요소와 예술 작품으로부터 추출한 청각 요소의 시각적요소로의 전환을 위한 인터페이스인 것이다. 이러한 기술의 개발은 기술적 측면으로는 청각장애인의 다양한 웹콘텐츠 접근 장애를 개선하는 독창적인 인터페이스 추출 환경을 확립하여 응용영역을 확대하고, 공학적으로 단언된 기술 영역을 콘텐츠 개발 기술이라는 새로운 영역으로 확장함으로써 간학제적 시도를 통한 기술영역을 유기적으로 확대하며, 문자와 오디오를 이미지와 시각적 효과로 전환하여 다각적인 미디어의 교차 활용 방안을 제시하여 콘텐츠를 형상화시키는 기술을 활성화 시키는 효과를 거둘 수 있다. 또한 청각장애인의 접근성 개선이라는 한정된 영역을 뛰어넘어 국가간 언어적인 장벽을 초월할 수 있는 다각적인 부가 동영상 콘텐츠에 대한 시도, 접근, 생산을 통해 글로벌 시대에 부응하는 새로운 방법론으로 발전 할 수 있다.

  • PDF

Learning and Transferring Deep Neural Network Models for Image Caption Generation (이미지 캡션 생성을 위한 심층 신경망 모델 학습과 전이)

  • Kim, Dong-Ha;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.617-620
    • /
    • 2016
  • 본 논문에서는 이미지 캡션 생성과 모델 전이에 효과적인 심층 신경망 모델을 제시한다. 본 모델은 멀티 모달 순환 신경망 모델의 하나로서, 이미지로부터 시각 정보를 추출하는 컨볼루션 신경망 층, 각 단어를 저차원의 특징으로 변환하는 임베딩 층, 캡션 문장 구조를 학습하는 순환 신경망 층, 시각 정보와 언어 정보를 결합하는 멀티 모달 층 등 총 5 개의 계층들로 구성된다. 특히 본 모델에서는 시퀀스 패턴 학습과 모델 전이에 우수한 LSTM 유닛을 이용하여 순환 신경망 층을 구성하고, 컨볼루션 신경망 층의 출력을 임베딩 층뿐만 아니라 멀티 모달 층에도 연결함으로써, 캡션 문장 생성을 위한 매 단계마다 이미지의 시각 정보를 이용할 수 있는 연결 구조를 가진다. Flickr8k, Flickr30k, MSCOCO 등의 공개 데이터 집합들을 이용한 다양한 비교 실험을 통해, 캡션의 정확도와 모델 전이의 효과 면에서 본 논문에서 제시한 멀티 모달 순환 신경망 모델의 우수성을 입증하였다.

Image captioning and video captioning using Transformer (Transformer를 사용한 이미지 캡셔닝 및 비디오 캡셔닝)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.303-305
    • /
    • 2023
  • 본 논문에서는 트랜스포머를 사용한 이미지 캡셔닝 방법과 비디오 캡셔닝 방법을 제안한다. 트랜스포머의 입력으로 사전 학습된 이미지 클래스 분류모델을 거쳐 추출된 특징을 트랜스포머의 입력으로 넣고 인코더-디코더를 통해 이미지와 비디오의 캡션을 출력한다. 이미지 캡셔닝의 경우 한글 데이터 세트를 학습하여 한글 캡션을 출력하도록 학습하였으며 비디오 캡셔닝의 경우 MSVD 데이터 세트를 학습하여 학습 후 출력 캡션의 성능을 다른 비디오 캡셔닝 모델의 성능과 비교하였다. 비디오 캡셔닝에서 성능향상을 위해 트랜스포머의 디코더를 변형한 GPT-2를 사용하였을 때 BLEU-1 점수가 트랜스포머의 경우 0.62, GPT-2의 경우 0.80으로 성능이 향상됨을 확인하였다

  • PDF

Design of a Deep Neural Network Model for Image Caption Generation (이미지 캡션 생성을 위한 심층 신경망 모델의 설계)

  • Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose an effective neural network model for image caption generation and model transfer. This model is a kind of multi-modal recurrent neural network models. It consists of five distinct layers: a convolution neural network layer for extracting visual information from images, an embedding layer for converting each word into a low dimensional feature, a recurrent neural network layer for learning caption sentence structure, and a multi-modal layer for combining visual and language information. In this model, the recurrent neural network layer is constructed by LSTM units, which are well known to be effective for learning and transferring sequence patterns. Moreover, this model has a unique structure in which the output of the convolution neural network layer is linked not only to the input of the initial state of the recurrent neural network layer but also to the input of the multimodal layer, in order to make use of visual information extracted from the image at each recurrent step for generating the corresponding textual caption. Through various comparative experiments using open data sets such as Flickr8k, Flickr30k, and MSCOCO, we demonstrated the proposed multimodal recurrent neural network model has high performance in terms of caption accuracy and model transfer effect.

Efficient Object Classification Scheme for Scanned Educational Book Image (교육용 도서 영상을 위한 효과적인 객체 자동 분류 기술)

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Young-Woon;Lee, Jong-Hyeok;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1323-1331
    • /
    • 2017
  • Despite the fact that the copyright has grown into a large-scale business, there are many constant problems especially in image copyright. In this study, we propose an automatic object extraction and classification system for the scanned educational book image by combining document image processing and intelligent information technology like deep learning. First, the proposed technology removes noise component and then performs a visual attention assessment-based region separation. Then we carry out grouping operation based on extracted block areas and categorize each block as a picture or a character area. Finally, the caption area is extracted by searching around the classified picture area. As a result of the performance evaluation, it can be seen an average accuracy of 83% in the extraction of the image and caption area. For only image region detection, up-to 97% of accuracy is verified.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

A Study on Image Indexing Method based on Content (내용에 기반한 이미지 인덱싱 방법에 관한 연구)

  • Yu, Won-Gyeong;Jeong, Eul-Yun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.903-917
    • /
    • 1995
  • In most database systems images have been indexed indirectly using related texts such as captions, annotations and image attributes. But there has been an increasing requirement for the image database system supporting the storage and retrieval of images directly by content using the information contained in the images. There has been a few indexing methods based on contents. Among them, Pertains proposed an image indexing method considering spatial relationships and properties of objects forming the images. This is the expansion of the other studies based on '2-D string. But this method needs too much storage space and lacks flexibility. In this paper, we propose a more flexible index structure based on kd-tree using paging techniques. We show an example of extracting keys using normalization from the from the raw image. Simulation results show that our method improves in flexibility and needs much less storage space.

  • PDF

Design and Implementation of MPEG-2 Compressed Video Information Management System (MPEG-2 압축 동영상 정보 관리 시스템의 설계 및 구현)

  • Heo, Jin-Yong;Kim, In-Hong;Bae, Jong-Min;Kang, Hyun-Syug
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1431-1440
    • /
    • 1998
  • Video data are retrieved and stored in various compressed forms according to their characteristics, In this paper, we present a generic data model that captures the structure of a video document and that provides a means for indexing a video stream, Using this model, we design and implement CVIMS (the MPEG-2 Compressed Video Information Management System) to store and retrieve video documents, CVIMS extracts I-frames from MPEG-2 files, selects key-frames from the I -frames, and stores in database the index information such as thumbnails, captions, and picture descriptors of the key-frames, And also, CVIMS retrieves MPEG- 2 video data using the thumbnails of key-frames and v31ious labels of queries.

  • PDF