• Title/Summary/Keyword: 이미지 제거 비율

Search Result 16, Processing Time 0.023 seconds

A new image rejection receiver architecture using simultaneously high-side and low-side injected LO signals (하이사이드와 로우사이드 LO 신호를 동시에 적용하는 새로운 이미지 제거 수신기 구조)

  • Moon, Hyunwon;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose a new image rejection receiver architecture using simultaneously the high-side and low-side injected LO signals. The proposed architecture has a lower noise figure (NF) performance and a higher linearity characteristic than the previous receiver architecture using a single LO signal. Also, the proposed receiver shows a higher IRR performance about 6dB than that of the previous Weaver image rejection architecture even though the same gain and phase errors between I-path and Q-path exist. To verify these characteristics, we derive an IRR formular of the proposed architecture as a function of mismatch parameters. And we demonstrate its formular's usefulness through the system simulation. Therefore, the proposed architecture will be widely used to implement the image rejection receiver due to its higher IRR performance.

Image Super Resolution Using Neural Architecture Search (심층 신경망 검색 기법을 통한 이미지 고해상도화)

  • Ahn, Joon Young;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.102-105
    • /
    • 2019
  • 본 논문에서는 심층 신경망 검색 방법을 사용하여 이미지 고해상도화를 위한 심층 신경망을 설계하는 방법을 구현하였다. 일반적으로 이미지 고해상도화, 잡음 제거 및 번짐 제거를 위한 심층신경망 구조는 사람이 설계하였다. 최근에는 이미지 분류 등 다른 영상처리 기법에서 사용하는 심층 신경망 구조를 검색하기 위한 방법이 연구되었다. 본 논문에서는 강화학습을 사용하여 이미지 고해상도화를 위한 심층 신경망 구조를 검색하는 방법을 제안하였다. 제안된 방법은 policy gradient 방법의 일종인 REINFORCE 알고리즘을 사용하여 심층 신경망 구조를 출력하여 주는 제어용 RNN(recurrent neural network)을 학습하고, 최종적으로 이미지 고해상도화를 잘 실현할 수 있는 심층 신경망 구조를 검색하여 설계하였다. 제안된 심층 신경망 구조를 사용하여 이미지 고해상도화를 구현하였고, 약 36.54dB 의 피크 신호 대비 잡음 비율(PSNR)을 가지는 것을 확인할 수 있었다.

  • PDF

Color Interpolation with Variable Color Ratio using Cross-channel Correlation (채널간 상관관계를 이용한 가변 칼라비율을 가진 칼라 보간법)

  • Park, Sang-Wook;Kang, Moon-Gi
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.519-522
    • /
    • 2003
  • 본 논문에서는 순차주사 CCD 이미지 센서를 위한 채널내 상관관계를 이용한 가변 칼라비율을 가진 칼라 보간법을 제안했다. 제안된 가변 칼라 비율은 채널내 상관관계뿐만 아니라 채널간의 상관관계를 이용하며 경계부근과 복잡한 국소지점에 나타난 왜곡된 칼라를 제거했다 채널간 상관관계를 이용한 가변 칼라비율을 가진 칼라 보간법은 기존의 접근 방법에 비해 주관적 그리고 객관적인 화질로 모두 우수한 결과를 실험적으로 보였다.

  • PDF

Hybrid Silhouette Extraction Using Color and Gradient Informations (색상 및 기울기 정보를 이용한 인간 실루엣 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.913-918
    • /
    • 2007
  • Human motion analysis is an important research subject in human-robot interaction (HRI). However, before analyzing the human motion, silhouette of human body should be extracted from sequential images obtained by CCD camera. The intelligent robot system requires more robust silhouette extraction method because it has internal vibration and low resolution. In this paper, we discuss the hybrid silhouette extraction method for detecting and tracking the human motion. The proposed method is to combine and optimize the temporal and spatial gradient information. Also, we propose some compensation methods so as not to miss silhouette information due to poor images. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

Security Algorithm for Vehicle Type Recognition (에지영상의 비율을 이용한 차종 인식 보안 알고리즘)

  • Rhee, Eugene
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • In this paper, a new security algorithm to recognize the type of the vehicle with the vehicle image as a input image is suggested. The vehicle recognition security algorithm is composed of five core parts, such as the input image, background removal, edge areas extraction, pre-processing(binarization), and the vehicle recognition. Therefore, the final recognition rate of the security algorithm for vehicle type recognition can be affected by the function and efficiency of each step. After inputting image into a gray scale image and removing backgrounds, the binarization is performed by extracting only the edge region. After the pre-treatment process for making outlines clear, the type of vehicles is categorized into large vehicles, passenger cars and motorcycles through the ratio of height and width of the vehicle.

Automatic Text Extraction in Video Images using Morphology (모폴로지을 이용한 비디오 영상에서의 자동 문자 추출)

  • 장인영;고병철;김길천;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.418-420
    • /
    • 2001
  • 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 본 논문에서는 일차적으로 입력 컬러 영상을 그레이 영상으로 변환한 후 입력 영상의 명암 대비를 강화시키기 위해 명암 대비 스트레칭을 적용한다. 이후 명암 대비 스트레칭된 영상의 분할을 위해 적응적 임계값을 적용하고 다음 단계에서 문자와 유사한 영역들을 적당한 크기 의 structuring element를 이용하여 제거하는 1차 하부 단계와 모폴로지 녹임(erosion)을 적용한 영상과 모폴로지(열림닫힘[OpenClose]+닫힘열림[CloseOpen])/2가 적용된 영상 사이의 차이 영상을 구하는 2차 하부 단계를 적용시킨다. 마지막 단계에서 각 후보 영역들 중 실제 자막 영역을 추출해내기 위해, 후보 문자 영역의 화소수 비율과 외곽선의 화소수의 비율, 그리고 장축과 단축간의 비율 등에 대해 필터링을 적용한다. 본 논문에서는 임의의 300개의 뉴스영상을 입력 값으로 실험한 결과 93.6%의 우수한 인식률을 얻을 수 있었다. 또한 본 논문에서 제안한 방법은 structuring element의 크기 조절을 통해 크기가 다른 다양한 이미지에서도 좋은 성능을 거둘 수 있다.

  • PDF

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.

Speckle Noise Reduction and Image Quality Improvement in U-net-based Phase Holograms in BL-ASM (BL-ASM에서 U-net 기반 위상 홀로그램의 스펙클 노이즈 감소와 이미지 품질 향상)

  • Oh-Seung Nam;Ki-Chul Kwon;Jong-Rae Jeong;Kwon-Yeon Lee;Nam Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.192-201
    • /
    • 2023
  • The band-limited angular spectrum method (BL-ASM) causes aliasing errors due to spatial frequency control problems. In this paper, a sampling interval adjustment technique for phase holograms and a technique for reducing speckle noise and improving image quality using a deep-learningbased U-net model are proposed. With the proposed technique, speckle noise is reduced by first calculating the sampling factor and controlling the spatial frequency by adjusting the sampling interval so that aliasing errors can be removed in a wide range of propagation. The next step is to improve the quality of the reconstructed image by learning the phase hologram to which the deep learning model is applied. In the S/W simulation of various sample images, it was confirmed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were improved by 5% and 0.14% on average, compared with the existing BL-ASM.

Improved Lung and Pulmonary Vessels Segmentation and Numerical Algorithms of Necrosis Cell Ratio in Lung CT Image (흉부 CT 영상에서 개선된 폐 및 폐혈관 분할과 괴사 세포 비율의 수치적 알고리즘)

  • Cho, Joon-Ho;Moon, Sung-Ryong
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • We proposed a numerical calculation of the proportion of necrotic cells in pulmonary segmentation, pulmonary vessel segmentation lung disease site for diagnosis of lung disease from chest CT images. The first step is to separate the lungs and bronchi by applying a three-dimensional labeling technique from a chest CT image and a three-dimensional region growing method. The second step is to divide the pulmonary vessels by applying the rate of change using the first order polynomial regression, perform noise reduction, and divide the final pulmonary vessels. The third step is to find a disease prediction factor in a two-step image and calculate the proportion of necrotic cells.