• Title/Summary/Keyword: 이미지 분석 기법

Search Result 858, Processing Time 0.025 seconds

Service Image Placement Mechanism Based on the Logical Fog Network (논리적 포그 네트워크 기반의 서비스 이미지 배치 기법)

  • Choi, Jonghwa;Ahn, Sanghyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.250-255
    • /
    • 2020
  • For the resolution of the latency problem of the cloud center-based cloud computing, fog computing was proposed that allows end devices to offload computations to nearby fog nodes. In the fog computing, virtualized service images are placed on fog nodes and, if service images are placed close to end devices, the duplicate service image placement problem may occur. Therefore, in this paper, we propose a service image placement mechanism based on the logical fog network that reduces duplicate service images by considering the pattern of collected service requests. For the performance evaluation of the proposed mechanism, through simulations, we compare ours with the on-demand mechanism placing a service image upon the receipt of a service request. We consider the performance factors like the number of service images, the number of non-accommodated service requests, and the network cost.

Making Photomontage using Transfer Mode (Transfer Mode를 활용하는 포토몽타주제작기법)

  • Yoon, Young-Beam;Kim, Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.102-109
    • /
    • 2013
  • The purpose of this study is to express imagination which is not limited to the description of the facts and reproduce the photos as a media to explore the new possibilities for creative expression and the experience of the day-to-day operations for the implementation of the scheme of art genre. The art work for this study using digital images in Autodesk Combustion Workspace as the upper and lower layers were synthesized using the Transfer Mode feature. This study proposed a new photomontage production model, and challenged for the Possibility of a variety of visual representations of media art. Especially the production presents in this study can be applied to various video.

A Machine Learning Approach to Web Image Classification (기계학습 기반의 웹 이미지 분류)

  • Cho, Soo-Sun;Lee, Dong-Woo;Han, Dong-Won;Hwang, Chi-Jung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.759-764
    • /
    • 2002
  • Although image occupies a large part of importance on the Web documents, there have not been many researches for analyzing and understanding it. Many Web images are used for carrying important information but others are not used for it. In this paper classify the Web images from presently served Web sites to erasable or non-erasable classes. based on machine learning methods. For this research, we have detected 16 special and rich features for Web images and experimented by using the Baysian and decision tree methods. As the results, F-measures of 87.09%, 82.72% were achived for each method and particularly, from the experiments to compare the effects of feature groups, it has proved that the added features on this study are very useful for Web image classification.

Error Correction Modeling for Construction Image Processing (건설 이미지 프로세싱을 위한 에러 제거 모델링)

  • Wu, Yuhong;Kim, Chang-Yoon;Kim, Hyoung-Kwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.234-237
    • /
    • 2009
  • 많은 건설 현장에서 카메라와 CCTV(Closed-circuit Television)와 같은 장비를 활용하여 건설 현장의 상황을 모니터링 하고 있다. 하지만 많은 작업이 실외에서 이루어지는 토목 건축공사의 특성상 적절한 수준의 영상 데이터를 축적하는 것은 쉽지 않은 일이다. 특히, 이미지 프로세싱기법을 사용 하여 자동화된 건설 관리의 수행 시, 영상 데이터의 품질에 따라 에러가 발생하여 건설 관리자가 잘못된 정보를 얻게 될 경우도 발생하게 된다. 본 연구에서는 케니엣지(Canny Edge) 인식기법과 워터쉐드(Watershed) 변환, 그리고 3D CAD Mask를 이용한 건축 구조물 기둥의 시공 상황 분석 기법에 근거하여, 영상 데이터 분석 시 오류를 최소화하기 위한 에러 제거 알고리즘을 제시한다. 실제 데이터와 비교를 통하여 그 활용 가능성 또한 검증한다.

  • PDF

Soft X-ray Nanoscopy for Nano- and Bio-materials at the Pohang Light Source

  • Kim, Nam-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.86-86
    • /
    • 2016
  • 최근 포항가속기연구소 10A 빔라인에 Scanning Transmission X-ray Microscopy (STXM)가 완성되어 운영 중이다. Soft x-ray imaging 장치로서 기술적으로 Sample scanning 기법이 활용된다. 이는 Zone plate를 통해 집속된 빔이 샘플에 조사되고 검출되는 방식이다. 이러한 Scanning 기법을 활용하고 있는 10A STXM은 기본적으로 흡수분광기법 (x-ray absorption spectroscopy)을 이용하고 있다. 특히, 10A 빔라인 STXM은 최고 20 nm까지 공간분해능이 가능하다는 장점이 있다. 따라서 수십에서 수백 나노미터 크기의 시료들 또는 나노구조에 대한 물리화학적 상태 분석이 쉽게 이루어지고 있다. 주로 시료를 투과하면서 흡수되는 X-선 세기 대비를 맵핑하는 형식의 이미지 데이터와 더불어 X-선의 에너지를 조정함으로써 각 에너지에 해당하는 이미지스택을 결과로 얻게 된다. 이러한 이미지 결과로부터 시료의 나노크기에서 오는 물리화학적 상태를 분석하고 물리에서 바이오까지 다양한 분야의 실험 활용이 가능한 상태다.

  • PDF

Error Spot Filtering Based on Similarity of Reference Image In Protein 2DE Image (단백질 2DE 이미지에서 참조 이미지에 의한 유사도 기반 에러 스팟 필터링 기법)

  • Jin, Yan-Hua;Shim, Jung-Eun;Lee, Won-Suk
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.513-516
    • /
    • 2005
  • 단백질 2DE 이미지 분석의 주요작업은 스팟 매칭에 의한 동일한 종류의 단백질 그룹인 패어링 클래스를 구성하는 것으로서 단백질간의 상호 작용, 질병에 관련한 단백질의 변화 등을 관찰할 수 있다. 하지만 2DE 실험의 여러 가지 문제점으로 인하여 패어링 클래스는 먼지, 공기방울 등 에러를 포함하게 되며 이런 에러들은 왜곡된 분석결과를 초래한다. 따라서 본 논문에서는 동일한 조직에서 같은 종류의 단백질은 발현량이 비슷하다는 특성을 이용하여 패어링 클래스의 개개의 스팟을 참조 스팟 속성으로 나눈 값을 유사도로 정의하고, 스팟의 유사도가 사용자에 의하여 선택되는 필터링 배수에 의한 범위를 벗어날 때 에러 스팟으로 간주하여 제거되는 에러 필터링 기법을 제안한다. 실험에서는 정확도(Precision), 재현율(Recall) 및 조화평균(Harmonic-mean) 값을 사용하여 제안된 필터링 기법의 타당성을 보여준다.

  • PDF

Locating and Searching Hidden Messages in Stego-Images (스테고 이미지에서 은닉메시지 감지기법)

  • Ji, Seon-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2009
  • Steganography conceals the fact that hidden message is being sent on the internet. Steganalysis can be detected the abrupt changes in the statistics of a stego-data. After message embedding, I have analyzed for the statistical significance of the fact the occurrence of differences among the four-neighboring pixels. In this case, when a embedding messages within a images is small, use EC value and chi-square test to determine whether a distribution in an images matches a distribution that shows distortion from stego-data.

Semi-Supervised Learning for Pathological Image Analysis (Semi-supervised learning 기법을 활용한 병리학 이미지 분석)

  • Yu-Jin Lee;Nora Jee-Young Park;Sang-Min Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.675-677
    • /
    • 2023
  • 본 연구는 병리학 이미지 분석에서 자주 발생하는 문제 중 하나인 레이블링 불일치 문제를 해결하고자 준지도학습(semi-supervised learning) 기법을 적용하였다. 기존의 병리 진단 과정은 정확한 판정 및 치료를 위해 전문가의 판단을 필요로 한다. 이로 인해, 시간이 매우 많이 소모되며 전문가의 피로도가 증가한다. 최근 이를 해결하고자 지도학습(supervised learning) 기법을 사용하여 업무의 피로도를 감소시키고자 하는 연구가 진행되고 있다. 하지만 병리 이미지 데이터에 대한 접근이 어렵고, 병변의 위치를 레이블링 하는 부분에서 많은 비용이 발생한다. 또한 암 병변의 스펙트럼적 특성으로 인해 레이블링 과정 속에서 레이블링 불일치 문제가 발생할 가능성이 높다. 이러한 문제를 극복하기 위해, 우리는 제한된 레이블 된 데이터와 많은 양의 레이블 되지 않은 데이터를 활용하는 준지도학습 방법론을 제안한다. 이 제안하는 방법은 필요한 수동 레이블링 작업량을 줄여, 병리학자들에게 보다 효과적인 진단 도구를 제공할 것으로 예상된다.

Identification Method of Geometric and Filtering Change Regions in Modified Digital Images (수정된 디지털 이미지에서 기하학적 변형 및 필터링 변형 영역을 식별하는 기법)

  • Hwang, Min-Gu;Cho, Byung-Joo;Har, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1292-1304
    • /
    • 2012
  • Recently, digital images are extremely forged by editors or advertisers. Also, amateurs can modify images throughout easy editing programs. In this study, we propose identification and analytical methods for the modified images to figure out those problems. In modified image analysis, we classify two parts; a filtering change and a geometric change. Those changes have an algorithm based on interpolation so that we propose the algorithm which is able to analyze a trace on a modified area. With this algorithm, we implement a detection map of interpolation using minimum filter, laplacian algorithm, and maximum filter. We apply the proposed algorithm to modified image and are able to analyze its modified trace using the detection map.

Video Segments Change Point Inference with Evolutionary Particle Filter (진화파티클필터를 이용한 비디오 세그먼트 전환점 추정)

  • Yu, Jun-Hui;Jang, Byeong-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.363-365
    • /
    • 2012
  • 데이터의 규모 및 활용도, 그리고 사용자 접근성 측면에서 실세계 데이터에서 가장 중요한 이슈가 되는 것은 비디오 데이터이다. 장르나 등장인물, 배경 등이 매우 상이한 대량의 비디오 데이터들이 등장하고 있기 때문에, 통일된 사전지식을 이용한 비디오 데이터 분석이 매우 비현실적이 되어가고 있으며 사전지식을 활용하지 않는 비디오 분석기법의 중요성이 커지고 있다. 본 논문에서는 진화 파티를 필터링과 우점 이미지를 이용하여 비디오 데이터를 분절(Segmentation)하는 기법을 소개한다. 이미지 분절화 과정에서 해결해야 할 난점은 시점 변화 및 움직임 등에 의해 발생하는 사소한 변화가 컴퓨터 관점에서는 무시하기 어려운 큰 변화로 해석될 수 있다는 점이다. 동일장면에서의 시점 변화와 같은 사소한 변화로 인하여 동일 세그먼트를 추정하지 못하는 어려움을 해결하기 위하여 우리는 이미지 일부를 표현하는 파티클의 개체군을 생성하여 협력적인 방식으로 개별 이미지 세그먼트를 표현하는 방법을 개발하였다. 또한 동일 인물의 움직임과 같은 변화에 대응할 수 있도록 진화 파티를 필터링 방법을 컬러 히스토그램 방법과 결합하여 추론 성능을 한층 개선하였다. 실제 TV 드라마에 대하여 수행된 인간 평가자의 분절 평가 결과와 비교하여 제안 방법의 성능을 확인하였다.