With a growing concern about climate change and green house gases mitigation, carbon labeling policy has been launched in several countries as an environmental policy which connects low carbon production to low carbon consumption. This research aims to propose a model that explains consumers' attitude and brand loyalty toward carbon labeling products. This model specifies the consumer's psychological processes by which consumer values, such as autonomy and environmental values, affect carbon labeling product and corporate images and finally form brand loyalty toward carbon labeling products. Panel data were collected in two separate surveys and analyzed using a structural equation technique. Results are summarized as follows. First, consumers' autonomy value(AV) positively affects locus of control(LC) and corporate image(CI). Second, consumers' environmental value(EV) positively influences perceived consumer effectiveness(PCE), which in turn has a negative effect on perceived barriers(PB). Perceived barriers finally affect product image(PI) negatively. Third, both corporate image and product image have causal relationships with brand loyalty. Our results suggest that carbon labeling policy contributes not only to the reduction of greenhouse gases but also to the increase of consumers' attitude and brand loyalty toward carbon labeling products. This research also provides governments with directions for efficient environmental policy and firms with guidance on effective marketing strategies about carbon labeling.
Journal of the Korea Society of Computer and Information
/
v.18
no.4
/
pp.13-18
/
2013
Panorama picturing is an elongated photographing technique that connects images with rotating and moving multiple images horizontally that are partly overlapped. However, for hand-operated photographs, it is difficult to adjust overlapped parts because of tilted angles. There has been a study comparing adjacent pictures using labeling technique but it was time-consuming and had angle dissonant cases in nature. In this paper, we propose a less time-consuming paranoiac scene reconstruction method. Our method is also based on labeling-and-comparing technique but uses only 1/3 of it. Then, if there exists angle dissonance, it tries to find characteristic points by SURF algorithm and adjusts them with homography. The efficacy of this method is experimentally verified by experiments using various images
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.283-286
/
2021
4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.
Purpose : The purpose of this study was to describe arterial spin labeling MR image findings of status epilepticus. Materials and Methods: A retrospective chart review within our institute revealed six patients who had been clinically diagnosed as status epilepticus and had also undergone MR imaging that included ASL in addition to routine sequences. Results: Six patients with status epilepticus were studied by conventional MR and arterial spin labeling imaging. All patients showed increased regional CBF correlating with EEG pathology. Notably, in two patients, conventional MRI and DWI showed no abnormal findings whereas pCASL demonstrated regional increased CBF in both patients. Conclusion: Arterial spin labeling might offer additional diagnostic capabilities in the evaluation of patients with status epilepticus.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.338-340
/
2019
Recently, the speed and size of data accumulation are increasing due to the development of networks. There are many difficulties in classifying these data. One of the difficulties is the difficulty of labeling. Labeling is usually done by people, but it is very difficult for everyone to understand the data in the same way and it is very difficult to label them on the same basis. In order to solve this problem, we implemented GAN to generate new image based on input image and to learn input data indirectly by using it for learning. This suggests that the accuracy of classification can be increased by increasing the number of learning data.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.273-276
/
2020
기존의 물리 센서를 활용한 주차 감지는 주차장 규모가 클수록 큰 비용이 필요하고 이미지 기반의 분석은 개별 주차장에 대한 데이터 라벨링과 학습의 노력이 필요했다. 본 논문은 LoRa(Long Range) 네트워크와 마이크로프로세서를 활용한 IoT기반의 시스템으로 영상데이터를 서버로 전송하고 COCO(Common Object in context) 데이터셋으로 학습된 Mask R-CNN 기반의 모델을 활용한 주차장 내 차량점유 감지 알고리즘을 통해 개별 주차장에 대한 학습 또는 라벨링 없이 주차장 내 주차상태를 식별하고 사용자에게 인터페이스를 통해 실시간으로 주차정보를 제공하는 시스템을 구현한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.380-382
/
2022
해상풍력발전단지 환경평가를 위한 조류충돌저감장치를 개발하기 위하여, 천연기념물 조류를 구부할 수 있는 인공지능 카메라를 개발한다. 보호해야 할 조류를 90프로 이상 정확하게 구분하기 위한 계층구조 라벨링 방법을 고안하고 YOLO5 모델을 사용하여 학습을 수행하고, 그 결과를 보인다.
Dong-Wook Lim;Chung-sub Lee;Si-Hyeong Noh;Chul Park;Min Su Kim;Hee-Kyung Moon;Chang-Won Jeong
Annual Conference of KIPS
/
2023.05a
/
pp.8-10
/
2023
삼킴장애는 음식물이 입에서 식도로 가지않고 걸리거나 기도(Trachea)로 흡입되는 문제를 갖는 상태이다. 특히 노인이나 신경계 질환을 앓는 환자의 경우 기도로 흡입된 음식덩이가 폐렴을 일으키고 결국에는 사망으로 이어지기에 적절한 치료와 관리가 요구된다. 보통 영상으로 판단할 수 있는 삼킴단계는 구강준비단계(Oral Preparatory Phase), 구강단계(Oral Phase), 인두단계(Pharyngeal Phase), 식도단계(Esophageal Phase) 4가지로 분류하고 삼킴장애는 침습(Penetration)과 흡인(Aspiration)으로 크게 2가지로 분류한다. 본 논문에서는 이러한 6가지 클래스를 가지는 삼킴장애 환자 비디오 파일을 라벨링하기 위한 웹 애플리케이션을 제안한다. 이를 구현하기 위해서 대용량 멀티프레임 이미지를 수신해서 분리하여 저장하도록 개발하였다. 또한 음식덩이를 정교하게 분할할 수 있도록 GrabCut 알고리즘을 적용하여 라벨링할 수 있도록 하였다. 차후 라벨러와 전문의 간의 협업이 가능하도록 라벨링 데이터의 상태를 관리할 수 있도록 개발하고자 한다.
GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.
Now a days, people eat outside of the home more and more frequently. Menu labeling can help people make more informed decisions about the foods they eat and help them maintain a healthy diet. This study was conducted to develop menu labeling system using Nutri-API (Nutrition Analysis Application Programming Interface). This system offers convenient user interface and menu labeling information with printout format. This system provide useful functions such as new food/menu nutrients information, retrieval food semantic service, menu plan with subgroup and nutrient analysis informations and print format. This system provide nutritive values with nutrient information and ratio of 3 major energy nutrients. MLS system can analyze nutrients for menu and each subgroup. And MLS system can display nutrient comparisons with DRIs and % Daily Nutrient Values. And also this system provide 6 different menu labeling formate with nutrient information. Therefore it can be used by not only usual people but also dietitians and restaurant managers who take charge of making a menu and experts in the field of food and nutrition. It is expected that Menu Labeling System (MLS) can be useful of menu planning and nutrition education, nutrition counseling and expert meal management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.