• Title/Summary/Keyword: 이미지 라벨링

Search Result 67, Processing Time 0.024 seconds

Factors Affecting Carbon-Labeling Brand Loyalty : Applying Value-Attitude-Behavior Model (탄소라벨링 브랜드 충성도를 결정하는 요인: 가치태도행동 모형의 적용)

  • Kim, Gwang-Suk;Park, Kyungwon;Park, Kiwan
    • Journal of Environmental Policy
    • /
    • v.13 no.3
    • /
    • pp.109-133
    • /
    • 2014
  • With a growing concern about climate change and green house gases mitigation, carbon labeling policy has been launched in several countries as an environmental policy which connects low carbon production to low carbon consumption. This research aims to propose a model that explains consumers' attitude and brand loyalty toward carbon labeling products. This model specifies the consumer's psychological processes by which consumer values, such as autonomy and environmental values, affect carbon labeling product and corporate images and finally form brand loyalty toward carbon labeling products. Panel data were collected in two separate surveys and analyzed using a structural equation technique. Results are summarized as follows. First, consumers' autonomy value(AV) positively affects locus of control(LC) and corporate image(CI). Second, consumers' environmental value(EV) positively influences perceived consumer effectiveness(PCE), which in turn has a negative effect on perceived barriers(PB). Perceived barriers finally affect product image(PI) negatively. Third, both corporate image and product image have causal relationships with brand loyalty. Our results suggest that carbon labeling policy contributes not only to the reduction of greenhouse gases but also to the increase of consumers' attitude and brand loyalty toward carbon labeling products. This research also provides governments with directions for efficient environmental policy and firms with guidance on effective marketing strategies about carbon labeling.

  • PDF

Panoramic Image Reconstruction using SURF Algorithm (SURF 알고리즘을 이용한 파노라마 영상 재구성)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.13-18
    • /
    • 2013
  • Panorama picturing is an elongated photographing technique that connects images with rotating and moving multiple images horizontally that are partly overlapped. However, for hand-operated photographs, it is difficult to adjust overlapped parts because of tilted angles. There has been a study comparing adjacent pictures using labeling technique but it was time-consuming and had angle dissonant cases in nature. In this paper, we propose a less time-consuming paranoiac scene reconstruction method. Our method is also based on labeling-and-comparing technique but uses only 1/3 of it. Then, if there exists angle dissonance, it tries to find characteristic points by SURF algorithm and adjusts them with homography. The efficacy of this method is experimentally verified by experiments using various images

Development of integrated data augmentation automation tools for deep learning (딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발)

  • Jang, Chan-Ho;Lee, Seo-Young;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

Pseudo Continuous Arterial Spin Labeling MR Imaging of Status Epilepticus (간질중첩증의 동맥 스핀 라벨링 자기공명영상)

  • Yi, Min-Kyung;Choi, Seung-Hong;Jung, Keun-Hwa;Yoon, Tae-Jin;Kim, Ji-Hoon;Sohn, Chul-Ho;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.142-151
    • /
    • 2012
  • Purpose : The purpose of this study was to describe arterial spin labeling MR image findings of status epilepticus. Materials and Methods: A retrospective chart review within our institute revealed six patients who had been clinically diagnosed as status epilepticus and had also undergone MR imaging that included ASL in addition to routine sequences. Results: Six patients with status epilepticus were studied by conventional MR and arterial spin labeling imaging. All patients showed increased regional CBF correlating with EEG pathology. Notably, in two patients, conventional MRI and DWI showed no abnormal findings whereas pCASL demonstrated regional increased CBF in both patients. Conclusion: Arterial spin labeling might offer additional diagnostic capabilities in the evaluation of patients with status epilepticus.

A Study on Classification System using Generative Adversarial Networks (GAN을 활용한 분류 시스템에 관한 연구)

  • Bae, Sangjung;Lim, Byeongyeon;Jung, Jihak;Na, Chulhun;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.338-340
    • /
    • 2019
  • Recently, the speed and size of data accumulation are increasing due to the development of networks. There are many difficulties in classifying these data. One of the difficulties is the difficulty of labeling. Labeling is usually done by people, but it is very difficult for everyone to understand the data in the same way and it is very difficult to label them on the same basis. In order to solve this problem, we implemented GAN to generate new image based on input image and to learn input data indirectly by using it for learning. This suggests that the accuracy of classification can be increased by increasing the number of learning data.

  • PDF

Parking information service system using LoRa network (LoRa 네트워크를 활용한 주차정보 서비스 시스템)

  • Kim, yuchan;Moon, Nammee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.273-276
    • /
    • 2020
  • 기존의 물리 센서를 활용한 주차 감지는 주차장 규모가 클수록 큰 비용이 필요하고 이미지 기반의 분석은 개별 주차장에 대한 데이터 라벨링과 학습의 노력이 필요했다. 본 논문은 LoRa(Long Range) 네트워크와 마이크로프로세서를 활용한 IoT기반의 시스템으로 영상데이터를 서버로 전송하고 COCO(Common Object in context) 데이터셋으로 학습된 Mask R-CNN 기반의 모델을 활용한 주차장 내 차량점유 감지 알고리즘을 통해 개별 주차장에 대한 학습 또는 라벨링 없이 주차장 내 주차상태를 식별하고 사용자에게 인터페이스를 통해 실시간으로 주차정보를 제공하는 시스템을 구현한다.

  • PDF

해상풍력발전기 조류환경 영향평가를 위한 인공지능 조류충돌방지 시스템

  • 이희용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.380-382
    • /
    • 2022
  • 해상풍력발전단지 환경평가를 위한 조류충돌저감장치를 개발하기 위하여, 천연기념물 조류를 구부할 수 있는 인공지능 카메라를 개발한다. 보호해야 할 조류를 90프로 이상 정확하게 구분하기 위한 계층구조 라벨링 방법을 고안하고 YOLO5 모델을 사용하여 학습을 수행하고, 그 결과를 보인다.

  • PDF

Implementation of Multi-frame Medical Image Labeling Web Application for Swallowing Disorder Analysis (삼킴장애 분석을 위한 멀티프레임 의료영상 라벨링 웹 애플리케이션 구현)

  • Dong-Wook Lim;Chung-sub Lee;Si-Hyeong Noh;Chul Park;Min Su Kim;Hee-Kyung Moon;Chang-Won Jeong
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.8-10
    • /
    • 2023
  • 삼킴장애는 음식물이 입에서 식도로 가지않고 걸리거나 기도(Trachea)로 흡입되는 문제를 갖는 상태이다. 특히 노인이나 신경계 질환을 앓는 환자의 경우 기도로 흡입된 음식덩이가 폐렴을 일으키고 결국에는 사망으로 이어지기에 적절한 치료와 관리가 요구된다. 보통 영상으로 판단할 수 있는 삼킴단계는 구강준비단계(Oral Preparatory Phase), 구강단계(Oral Phase), 인두단계(Pharyngeal Phase), 식도단계(Esophageal Phase) 4가지로 분류하고 삼킴장애는 침습(Penetration)과 흡인(Aspiration)으로 크게 2가지로 분류한다. 본 논문에서는 이러한 6가지 클래스를 가지는 삼킴장애 환자 비디오 파일을 라벨링하기 위한 웹 애플리케이션을 제안한다. 이를 구현하기 위해서 대용량 멀티프레임 이미지를 수신해서 분리하여 저장하도록 개발하였다. 또한 음식덩이를 정교하게 분할할 수 있도록 GrabCut 알고리즘을 적용하여 라벨링할 수 있도록 하였다. 차후 라벨러와 전문의 간의 협업이 가능하도록 라벨링 데이터의 상태를 관리할 수 있도록 개발하고자 한다.

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

Development of Menu Labeling System (MLS) Using Nutri-API (Nutrition Analysis Application Programming Interface) (영양분석 API를 이용한 메뉴 라벨링 시스템 (MLS) 개발)

  • Hong, Soon-Myung;Cho, Jee-Ye;Park, Yu-Jeong;Kim, Min-Chan;Park, Hye-Kyung;Lee, Eun-Ju;Kim, Jong-Wook;Kwon, Kwang-Il;Kim, Jee-Young
    • Journal of Nutrition and Health
    • /
    • v.43 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Now a days, people eat outside of the home more and more frequently. Menu labeling can help people make more informed decisions about the foods they eat and help them maintain a healthy diet. This study was conducted to develop menu labeling system using Nutri-API (Nutrition Analysis Application Programming Interface). This system offers convenient user interface and menu labeling information with printout format. This system provide useful functions such as new food/menu nutrients information, retrieval food semantic service, menu plan with subgroup and nutrient analysis informations and print format. This system provide nutritive values with nutrient information and ratio of 3 major energy nutrients. MLS system can analyze nutrients for menu and each subgroup. And MLS system can display nutrient comparisons with DRIs and % Daily Nutrient Values. And also this system provide 6 different menu labeling formate with nutrient information. Therefore it can be used by not only usual people but also dietitians and restaurant managers who take charge of making a menu and experts in the field of food and nutrition. It is expected that Menu Labeling System (MLS) can be useful of menu planning and nutrition education, nutrition counseling and expert meal management.