• 제목/요약/키워드: 이미지 데이터 셋

검색결과 302건 처리시간 0.028초

YOLO 네트워크를 이용한 단자 구분 (Classification of terminal using YOLO network)

  • 정다운;정성훈;김재윤;정지훈;공경보
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.183-186
    • /
    • 2022
  • 최근 인공지능 기반 객체 탐지 기술이 발전함에 따라 영상 감시, 얼굴 인식, 로봇 제어, IoT, 자율주행, 제조업, 보안 등 다양한 분야에 활용되고 있다. 이에 본 논문은 발전된 객체 탐지 알고리즘을 이용하여 비전문가에겐 생소한 컴퓨터나 전기 장치 등의 '단자(terminal)' 모양을 구별하는 방법을 제안한다. 이를 위해 객체 탐지 프로그램인 You Only Look Once (YOLO) 알고리즘을 이용하여 입력한 단자들의 모양을 검출하는 알고리즘을 구성하였다. 일상에서 쉽게 볼 수 있는 단자들의 이미지(VGA, DVI, HDMI, DP, USB-A, USB-C)를 라벨링하여 데이터셋을 구축하였고, YOLOv4와 YOLOv5 두 버전의 알고리즘을 사용하여 성능을 검증하였다. 실험 결과 mean Average Precision(mAP) 기준 최대 92.9%의 정확도를 얻을 수 있었다. 전기 장치에 따라 단자의 모양이 다양하고, 그 종류 또한 많기 때문에 본 연구가 방송 기술 등의 여러 분야에 응용될 것으로 기대된다.

  • PDF

강인한 물체 검출을 위한 뉴럴 네트워크의 특징 분석 (Feature Analysis of Neural Network for Robust Object Detection)

  • 김준표;김희제;정유진;박상진;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.199-202
    • /
    • 2022
  • 왜곡된 영상에 강인한 물체 검출은 자율 주행과 같은 안전에 치명적인 실생활 응용 분야에서 핵심 문제로 다뤄지고 있다. 이러한 이유로, 영상 처리 및 컴퓨터 비전 분야에서 강인한 물체 검출에 대한 연구가 활발하게 진행되고 있다. 본 논문에서 우리는 왜곡된 영상이나 이미지에서도 일정한 성능의 물체 검출을 위한 연구 [4]를 benchmark 하여 다양한 방법으로 변형된 데이터셋을 통해 학습한 모델을 성능과 feature map 측면에서 분석해 봄으로써, 향후 강인한 물체 검출에 있어 효과적인 성능 향상을 위한 intuition 을 제공하고자 한다.

  • PDF

국가무형문화재 기록영상 화질 개선에 관한 연구 (A Study on the Video Quality Improvement of National Intangible Cultural Heritage Documentary Film)

  • 권도형;유정민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.439-441
    • /
    • 2020
  • 본 논문에서는 국가무형문화재 기록영상의 화질 개선에 관한 연구를 진행한다. 기록영상의 화질 개선을 위해 SRGAN 기반의 초해상화 복원영상 생성 프레임워크의 적용을 제안한다. Image aumentation과 median filter를 적용한 데이터셋과 적대적 신경망인 Generative Adversarial Network (GAN)을 기반으로 딥러닝 네트워크를 구축하여 입력된 Low-Resolution 이미지를 통해 High-Resolution의 복원 영상을 생성한다. 이 연구를 통해 국가무형문화재 기록영상 뿐만 아니라 문화재 전반의 사진 및 영상 기록 자료의 품질 개선 가능성을 제시하고, 영상 기록 자료의 아카이브 구축을 통해 지속적인 활용의 기초연구가 되는 것을 목표로 한다.

  • PDF

패션 의류 영상 분류 방법 (A Method for Fashion Clothing Image Classification)

  • 고톱수렌 이칭허를러;신성윤;이현창
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.559-560
    • /
    • 2020
  • 우리는 패션 의류 이미지의 빠르고 정확한 분류를 달성하기 위해 최적화 된 동적 감쇠 학습률과 개선 된 모델 구조를 갖춘 딥 러닝 모델을 기반으로 하는 새로운 방법을 제안했습니다. 우리는 Fashion-MNIST 데이터 셋에 대해 제안 된 모델을 사용하여 실험을 수행하고 이를 CNN, LeNet, LSTM 및 BiLSTM의 방법과 비교했습니다.

  • PDF

향상된 비트 평면 분할을 통한 다중 학습 통합 신경망 구축 (Improved Adapting a Single Network to Multiple Tasks By Bit Plane Slicing and Dithering)

  • 배준기;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.643-646
    • /
    • 2020
  • 본 논문에서는 직전 연구였던 비트 평면 분할과 디더링을 통한 다중 학습 통합 신경망 구축에서의 한계점을 분석하고, 향상시킨 방법을 제시한다. 통합 신경망을 구축하는 방법에 대해 최근까지 시도되었던 방법들은 신경망을 구성하는 가중치(weight)나 층(layer)를 공유하거나 태스크 별로 구분하는 것들이 있다. 이와 같은 선상에서 본 연구는 더 작은 단위인 가중치의 비트 평면을 태스크 별로 할당하여 보다 효율적인 통합 신경망을 구축한다. 실험은 이미지 분류 문제에 대해 수행하였다. 대중적인 신경망 구조인 ResNet18 에 대해 적용한 결과 데이터셋 CIFAR10 과 CIFAR100 에서 이론적인 압축률 50%를 달성하면서 성능 저하가 거의 발견되지 않았다.

  • PDF

패션 의류 영상 분류 딥러닝 (Fashion Clothing Image Classification Deep Learning)

  • 신성윤;왕광싱;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.676-677
    • /
    • 2022
  • 본 논문에서는 패션 의류 이미지의 빠르고 정확한 분류를 달성하기 위해 최적화된 동적 붕괴 학습률과 개선된 모델 구조를 가진 딥 러닝 모델을 기반으로 하는 새로운 방법을 제안한다. Fashion-MNIST 데이터 셋에서 제안된 모델을 사용하여 실험을 수행하고 CNN, LeNet, LSTM 및 BiLSTM의 방법과 비교한다.

  • PDF

스윙 모션 사전 지식을 활용한 정확한 야구 선수 포즈 보정 (Motion Prior-Guided Refinement for Accurate Baseball Player Pose Estimation)

  • 오승현;김희원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.615-616
    • /
    • 2024
  • 현대 야구에서 타자의 스윙 패턴 분석은 상대 투수가 투구 전략을 수립하는데 상당히 중요하다. 이미지 기반의 인간 포즈 추정(HPE)은 대규모 스윙 패턴 분석을 자동화할 수 있다. 그러나 기존의 HPE 방법은 빠르고 가려진 신체 움직임으로 인해 복잡한 스윙 모션을 정확하게 추정하는 데 어려움이 있다. 이러한 문제를 극복하기 위해 스윙 모션에 대한 사전 정보를 활용하여 야구 선수의 포즈를 보정하는 방법(BPPC)을 제안한다. BPPC는 동작 인식, 오프셋 학습, 3D에서 2D 프로젝션 및 동작 인지 손실 함수를 통해 스윙 모션에 대한 사전 정보를 반영하여 기성 HPE 모델 결과를 보정한다. 실험에 따르면 BPPC는 벤치마크 데이터셋에서 기성 HPE 모델의 2D 키포인트 정확도를 정량적 및 정성적으로 향상시키고, 특히 신뢰도 점수가 낮고 부정확한 키포인트를 크게 보정했다.

트래픽 플로우 및 딥러닝 기반의 프로토콜 분류 방법론 (Protocol Classification Based on Traffic Flow and Deep Learning)

  • 박예진;조영필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.836-838
    • /
    • 2024
  • 본 논문은 현대 사회에서 급증하는 VPN의 악용 가능성을 인지하고 VPN과 Non-VPN 트래픽 구별의 중요도를 강조한다. 전통적인 포트 기반 분류와 패킷 분석 접근법의 한계를 넘어서기 위해 트래픽 플로우 특징과 인공지능(AI) 기술을 결합하여 VPN과 Non-VPN 프로토콜을 구별하는 새로운 방법을 제안한다. 직접 수집한 패킷 데이터셋을 사용하여 트래픽 플로우 특징을 추출하고, 패킷의 페이로드와 결합해 이미지를 생성한다. 이를 CNN 모델에 적용함으로써 높은 정확도로 프로토콜을 구별한다. 실험 결과, 제안된 방법은 99.71%의 높은 정확도를 달성하여 트래픽 분류 및 네트워크 보안 강화에 기여할 수 있는 방법론임을 입증한다.

고주파에 적합한 교차 엔트로피 손실함수에 대한 초해상도 (Super-Resolution with Cross-Entropy Loss Adapted to High Frequencies)

  • 오윤주;김태현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.709-710
    • /
    • 2024
  • Super resolution에서 High-frequency Details를 개선하는 것이 최근 문제이다. 기존에는 Super resolution을 Regression task로 접근하므로써 L2 Loss를 사용하여 이미지가 흐릿하게 되었다. 이를 해결하기위해, Classification task로 바꾸므로써 Cross Entropy Loss을 적용하여 Cross-entropy Super-resolution (CS)를 설계한다. CS를 통해 선명도와 Details이 개선되지만, 저주파의 CE Loss 학습으로인한 Black Artifacts가 발생한다. 그래서, L2 Loss는 저주파와 같이 큰 신호에 더 초점을 맞추므로, 성능 개선을 위해 저주파를 L2 Loss에서, 고주파를 CE Loss에서 학습시킨 Frequency-specific Cross-entropy Super-resolution (FCS)을 제안한다. 우리는 왜곡에 강하며 Human의 인식과 유사한 측정지표인 Learned Perceptual Image Patch Similarity (LPIPS)로 평가한다. 실험한 모든 데이터 셋에서 우리의 FCS는 Baseline보다 LPIPS가 약 1.7배 정도 개선되었다.

드론 식별 시스템을 위한 합성곱 신경망 기반 이미지 분류 모델 성능 비교 (Performance Comparison of CNN-Based Image Classification Models for Drone Identification System)

  • 김영완;조대균;박건우
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.639-644
    • /
    • 2024
  • 최근 전장에서의 드론 활용이 정찰뿐만 아니라 화력 지원까지 확장됨에 따라, 드론을 조기에 자동으로 식별하는 기술의 중요성이 더욱 증가하고 있다. 본 연구에서는 드론과 크기 및 외형이 유사한 다른 공중 표적들인 새와 풍선을 구분할 수 있는 효과적인 이미지 분류 모델을 확인하기 위해, 인터넷에서 수집한 3,600장의 이미지 데이터셋을 사용하고, 세 가지 사전 학습된 합성곱 신경망 모델(VGG16, ResNet50, InceptionV3)의 특징 추출기능과 추가 분류기를 결합한 전이 학습 접근 방식을 채택하였다. 즉, 가장 우수한 모델을 확인하기 위해 세 가지 사전 학습된 모델(VGG16, ResNet50, InceptionV3)의 성능을 비교 분석하였으며, 실험 결과 InceptionV3 모델이 99.66%의 최고 정확도를 나타냄을 확인하였다. 본 연구는 기존의 합성곱 신경망 모델과 전이 학습을 활용하여 드론을 식별하는 새로운 시도로써, 드론 식별 기술의 발전에 크게 기여 할 것으로 기대된다.