• Title/Summary/Keyword: 이미지유사도

Search Result 881, Processing Time 0.033 seconds

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.51-55
    • /
    • 2020
  • In this paper, an improved FAM is proposed by adopting similarity learning in the existing FAM (Fuzzy Associative Memory) used in image restoration. Image restoration refers to the recovery of the latent clean image from its noise-corrupted version. In serious application like face recognition, this process should be noise-tolerant, robust, fast, and scalable. The existing FAM is a simple single layered neural network that can be applied to this domain with its robust fuzzy control but has low capacity problem in real world applications. That similarity measure is implied to the connection strength of the FAM structure to minimize the root mean square error between the recovered and the original image. The efficacy of the proposed algorithm is verified with significant low error magnitude from random noise in our experiment.

Similarity-Based Subsequence Search in Image Sequence Databases (이미지 시퀀스 데이터베이스에서의 유사성 기반 서브시퀀스 검색)

  • Kim, In-Bum;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.501-512
    • /
    • 2003
  • This paper proposes an indexing technique for fast retrieval of similar image subsequences using the multi-dimensional time warping distance. The time warping distance is a more suitable similarity measure than Lp distance in many applications where sequences may be of different lengths and/or different sampling rates. Our indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-bound distance function to filter out dissimilar subsequences without false dismissals. It applies the normaliration for an easier control of relative weighting of feature dimensions and the discretization to compress the index tree. Experiments on medical and synthetic image sequences verify that the proposed method significantly outperforms the naive method and scales well in a large volume of image sequence databases.

Improved SIM Algorithm for Contents-based Image Retrieval (내용 기반 이미지 검색을 위한 개선된 SIM 방법)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2009
  • Contents-based image retrieval methods are in general more objective and effective than text-based image retrieval algorithms since they use color and texture in search and avoid annotating all images for search. SIM(Self-organizing Image browsing Map) is one of contents-based image retrieval algorithms that uses only browsable mapping results obtained by SOM(Self Organizing Map). However, SOM may have an error in selecting the right BMU in learning phase if there are similar nodes with distorted color information due to the intensity of light or objects' movements in the image. Such images may be mapped into other grouping nodes thus the search rate could be decreased by this effect. In this paper, we propose an improved SIM that uses HSV color model in extracting image features with color quantization. In order to avoid unexpected learning error mentioned above, our SOM consists of two layers. In learning phase, SOM layer 1 has the color feature vectors as input. After learning SOM Layer 1, the connection weights of this layer become the input of SOM Layer 2 and re-learning occurs. With this multi-layered SOM learning, we can avoid mapping errors among similar nodes of different color information. In search, we put the query image vector into SOM layer 2 and select nodes of SOM layer 1 that connects with chosen BMU of SOM layer 2. In experiment, we verified that the proposed SIM was better than the original SIM and avoid mapping error effectively.

  • PDF

SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection (윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Deok-Hwan;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.345-355
    • /
    • 2008
  • SIFT is popularly used in computer vision application such as object recognition, motion tracking, and 3D reconstruction among various shape descriptors. However, it is not easy to apply SIFT into the image similarity search as it is since it uses many high dimensional keypoint vectors. In this paper, we present a SIFT based image similarity search method using an edge image pyramid and an interesting region detection. The proposed method extracts keypoints, which is invariant to contrast, scale, and rotation of image, by using the edge image pyramid and removes many unnecessary keypoints from the image by using the hough transform. The proposed hough transform can detect objects of ellipse type so that it can be used to find interesting regions. Experimental results demonstrate that the retrieval performance of the proposed method is about 20% better than that of traditional SIFT in average recall.

An Efficient Clustering Based Image Retrieval using Color and Shape features (색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법)

  • 이근섭;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

Design of Image Management Application for Mobile Phone (모바일 폰의 이미지 관리 애플리케이션의 설계)

  • Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.429-430
    • /
    • 2018
  • The introduction of mobile devices increased the need to apply limitations such as mobile devices' memory, speed, energy, and bandwidth on the designs of searching images. There is a demand to reduce such limitations on searching images on the mobile phone. Hence, this paper proposes a design that adds tags on pictures to manage the images in mobile environment, allowing efficient searches and deletion of duplicate files based on the similarities of the images. The proposed method does not compromise its efficiency by increasing costs; it also reduces the volume of data needed for mobile devices.

  • PDF

Using similarity based image caption to aid visual question answering (유사도 기반 이미지 캡션을 이용한 시각질의응답 연구)

  • Kang, Joonseo;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.191-204
    • /
    • 2021
  • Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.

Research on Deep Learning Performance Improvement for Similar Image Classification (유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구)

  • Lim, Dong-Jin;Kim, Taehong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.1-9
    • /
    • 2021
  • Deep learning in computer vision has made accelerated improvement over a short period but large-scale learning data and computing power are still essential that required time-consuming trial and error tasks are involved to derive an optimal network model. In this study, we propose a similar image classification performance improvement method based on CR (Confusion Rate) that considers only the characteristics of the data itself regardless of network optimization or data reinforcement. The proposed method is a technique that improves the performance of the deep learning model by calculating the CRs for images in a dataset with similar characteristics and reflecting it in the weight of the Loss Function. Also, the CR-based recognition method is advantageous for image identification with high similarity because it enables image recognition in consideration of similarity between classes. As a result of applying the proposed method to the Resnet18 model, it showed a performance improvement of 0.22% in HanDB and 3.38% in Animal-10N. The proposed method is expected to be the basis for artificial intelligence research using noisy labeled data accompanying large-scale learning data.

Research on Improving the Performance of Image based Web Structure Similarity: Combining SSIM and ORB algorithms

  • Seo-Hyuck Lee;Jin-san Kim;Jung-Hwan Kim;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.1-10
    • /
    • 2024
  • This study aims to establish a standard to accurately determine the similarity of the results when web pages are generated automatically using AI technology due to the explosive increase in demand for digital business. The YOLO, SSIM, Jaccard, and ORB techniques presented in previous studies related to the existing image similarity evaluation index generally focused on the partial and morphological similarity between the reference and the derived image. However, with the development of more complex and in-depth digital services based on generative AI, the need for comprehensive similarity analysis and determination methods that reflect the context and structure has emerged. Accordingly, this study proposed and verified a method to obtain 'Web Structural Similarity (WSS)' by combining the advantages of SSIM and ORB prior techniques. The research will serve various meaningful implications.

The SIFT and HSV feature extraction-based waste Object similarity measurement model (SIFT 및 HSV 특징 추출 기반 폐기물 객체 유사도 측정 모델)

  • JunHyeok Go;Hyuk soon Choi;Jinah Kim;Nammee Moon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1220-1223
    • /
    • 2023
  • 폐기물을 처리하는데 있어 배출과 수거에 대한 프로세스 자동화를 위해 폐기물 객체 유사도 판별이 요구된다. 이를 위해 본 연구에서는 폐기물 데이터셋에서 SIFT(Scale-Invariant Feature Transform)와 HSV(Hue, Saturation, Value)기반으로 두 이미지의 공통된 특징을 추출해 융합하고, 기계학습을 통해 이미지 객체 간의 유사도를 측정하는 모델을 제안한다. 실험을 위해 수집된 폐기물 데이터셋 81,072 장을 활용하여 이미지를 학습시키고, 전통적인 임계치 기반 유사도 측정과 본 논문에서 제시하는 유사도 측정을 비교하여 성능을 확인하였다. 임계치 기반 측정에서 SIFT 와 HSV 는 각각 0.82, 0.89(Acc)가 측정되었고, 본 논문에서 제시한 특징 추출 방법을 사용한 기계학습의 성능은 DT(Decision Tree)와 SVM(Support Vector Machine) 모두 0.93 (Acc)로 4%의 정확도가 향상되었다.