• Title/Summary/Keyword: 이미지분할

Search Result 460, Processing Time 0.024 seconds

Recognition of Passport Image Using Removing Noise Branches and Enhanced Fuzzy ART (잡영 가지 제거 알고리즘과 개선된 퍼지 ART를 이용한 여권 코드 인식)

  • Lee, Sang-Soo;Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.377-382
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하는 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔 되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤관선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다, 이진화된 문자열 영역에 대해 여권 코드의 인식율을 높이기 위하여 잡영 가지 제거 알고리즘을 적용하여 개별 문자의 잡영을 제거한 후에 개별 코드를 추출하며, CDM 마스크를 적용하여 추출된 개별코드를 복원한다. 추출된 개별코드는 개선된 퍼지 ART 알고리즘을 제안하여 인식에 적용한다. 실제 여권 영상을 대상으로 실험한 결과, CDM 마스크를 이용하여 추출된 개별 코드를 개선된 퍼지 ART 알고리즘을 적용하여 인식한 방법보다 잡영 제거 알고리즘과 CDM 마스크를 적용하여 개선된 퍼지 ART 알고리즘으로 개별 코드를 인식하는 것이 효율적인 것을 확인하였다. 그리고 기존의 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우보다 본 논문에서 제안한 개선된 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우가 서로 다른 패턴들이 같은 클러스터로 분류되지 않아 인식 성능이 개선되었다.생산하고 있다. 또한 이러한 자료를 바탕으로 지역통계 수요에 즉각 대처할 수 있다. 더 나아가 이와 같은 통계는 전 국민에 대한 패널자료이기 때문에 통계적 활용의 범위가 방대하다. 특히 개인, 가구, 사업체 등 사회 활동의 주체들이 어떻게 변화하는지를 추적할 수 있는 자료를 생산함으로써 다양한 인과적 통계분석을 할 수 있다. 행정자료를 활용한 인구센서스의 이러한 특징은 국가의 교육정책, 노동정책, 복지정책 등 다양한 정책을 정확한 자료를 근거로 수립할 수 있는 기반을 제공한다(Gaasemyr, 1999). 이와 더불어 행정자료 기반의 인구센서스는 비용이 적게 드는 장점이 있다. 예를 들어 덴마크나 핀란드에서는 조사로 자료를 생산하던 때의 1/20 정도 비용으로 행정자료로 인구센서스의 모든 자료를 생산하고 있다. 특히, 최근 모든 행정자료들이 정보통신기술에 의해 데이터베이스 형태로 바뀌고, 인터넷을 근간으로 한 컴퓨터네트워크가 발달함에 따라 각 부처별로 행정을 위해 축적한 자료를 정보통신기술로 연계${cdot}$통합하면 막대한 조사비용을 들이지 않더라도 인구센서스자료를 적은 비용으로 생산할 수 있는 근간이 마련되었다. 이렇듯 행정자료 기반의 인구센서스가 많은 장점을 가졌지만, 그렇다고 모든 국가가 당장 행정자료로 인구센서스를 대체할 수 있는 것은 아니다. 행정자료로 인구센서스통계를 생산하기 위해서는 각 행정부서별로 사용하는 행정자료들을 연계${cdot}$통합할 수 있도록 국가사회전반에 걸쳐 행정 체제가 갖추어져야 하기 때문이다. 특히 모든 국민 개개인에 관한 기본정보, 개인들이 거주하며 생활하는 단위인 개별 주거단위에 관한 정보가 행정부에 등록되어

  • PDF

2.5D Mapping Module and 3D Cloth Simulation System (2.5D Mapping 모듈과 3D 의복 시뮬레이션 시스템)

  • Kim Ju-Ri;Kim Young-Un;Joung Suck-Tae;Jung Sung-Tae
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.371-380
    • /
    • 2006
  • This paper utilizing model picture of finished clothes in fashion design field various material (textile fabrics) doing Draping directly can invent new design, and do not produce direction sample or poetic theme width and confirm clothes work to simulation. Also, construct database about model and material image and embodied system that can confirm Mapping result by real time. And propose clothes simulation system to dress to 3D human body model of imagination because using several cloth pieces first by process to do so that can do simulation dressing abstracted poetic theme width to 3D model here. Proposed system creates 3D model who put clothes by physical simulation that do fetters to mass-spring model after read 3D human body model file and 2D foundation pattern file. System of this treatise examines collision between triangle that compose human body model for realistic simulation and triangle that compose clothes and achieved reaction processing. Because number of triangle to compose human body is very much, this collision examination and reaction processing need much times. To solve this problem, treatise that see could create realistic picture by method to diminish collision public prosecutor and reaction processing number, and could dress clothes to imagination human body model within water plant taking advantage of Octree space sharing techniques.

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Application of 3D printer in dental clinic (치과 진료실에서 3D 프린트의 활용)

  • Kim, Hyun Dong
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.82-96
    • /
    • 2018
  • 3D printing is a process of producing 3d object from a digital file in STL format by joining, bonding, sintering or polymerizing small volume elements by layer. The various type of 3d printing is classified according to the additive manufacturing strategies. Among the types of 3D printer, SLA(StereoLithography Apparatus) and DLP(Digital Light Processing) 3D printer which use polymerization by light source are widely used in dental office. In the previous study, a full-arch scale 3d printed model is less precise than a conventional stone model. However, in scale of quadrant arch, a 3d printed model is significantly precise than a five-axis milled model. Using $3^{rd}$ Party dental CAD program, full denture, provisional crowns and diagnostic wax-up model are fabricated by 3d printer in dental office. In Orthodontics, based on virtual setup model, indirect bracket bonding tray can be generated by 3d printer. And thermoforming clear aligner can be fabricated on the 3d printed model. 3D printed individual drilling guide enable the clinician to place the dental implant on the proper position. The development of layer additive technology enhance the quality of 3d printing object and shorten the operating time of 3D printing. In the near future, traditional dental laboratory process such as casting, denture curing will be replaced by digital 3D printing.

Development of Mask-RCNN Model for Detecting Greenhouses Based on Satellite Image (위성이미지 기반 시설하우스 판별 Mask-RCNN 모델 개발)

  • Kim, Yun Seok;Heo, Seong;Yoon, Seong Uk;Ahn, Jinhyun;Choi, Inchan;Chang, Sungyul;Lee, Seung-Jae;Chung, Yong Suk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • The number of smart farms has increased to save labor in agricultural production as the subsidy become available from central and local governments. The number of illegal greenhouses has also increased, which causes serious issues for the local governments. In the present study, we developed Mask-RCNN model to detect greenhouses based on satellite images. Greenhouses in the satellite images were labeled for training and validation of the model. The Mask-RC NN model had the average precision (AP) of 75.6%. The average precision values for 50% and 75% of overlapping area were 91.1% and 81.8%, respectively. This results indicated that the Mask-RC NN model would be useful to detect the greenhouses recently built without proper permission using a periodical screening procedure based on satellite images. Furthermore, the model can be connected with GIS to establish unified management system for greenhouses. It can also be applied to the statistical analysis of the number and total area of greenhouses.

Object Detection Based on Hellinger Distance IoU and Objectron Application (Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

Design of Over-sampled Channelized DRFM Structure in order to Remove Interference and Prevent Spurious Signal (간섭 제거 및 스퓨리어스 방지를 위한 오버샘플링 된 채널화 DRFM 구조 설계)

  • Kim, Yo-Han;Hong, Sang-Guen;Seo, Seung-Hun;Jo, Jung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1213-1221
    • /
    • 2022
  • In Electronic Warfare, the need to develop a jamming system that protects our location information from enemy radar is constantly increasing. The jamming system normally uses wide-band DRFM(Digital Radio Frequency Memory) that processes the entire bandwidth at once. However, it is difficult to jam if there is a CW(Continuous Wave) interference signal in the band. Recently, instead of wide-band signal processing, a structure using a filter bank that divides the entire band into several sub-bands and processes each sub-band independently has been proposed. Although it is possible to handle interference signal through the filter bank structure, spurious signal occurs when the signal is received at a boundary frequency between sub-bands. Spurious signal makes a output power of jamming signal distributed, resulting in lower JSR(Jamming to Signal Ratio) and less jamming effect. This paper proposes an over-sampled channelized DRFM structure that enables interference response and prevents spurious signal for sub-band boundary frequency input.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.