연안에서 관측된 Acoustic Doppler Current Profiler(ADCP) 유속자료의 10-20%는 음향반사 측면효과로 인하여 일반적으로 사용하지 않는다. 본 연구는 ADCP의 사용되지 않았던 자료를 복구하여 영산강 하구에서 저조시 방류되는 담수의 경계면 이류속도를 구하고 이를 통해 담수 유량과 수층의 역학적 안정도를 보다 정확하게 계산하여 하구 내 혼합 환경을 잘 이해하고자 한다. 현장관측은 2011년 8월 영산강의 하구언 전면과 고하도 부근 두 정점에서 한달 동안 실시하였으며, 방류수의 이류속도는 유효 유속 판정에 상관도, 퍼센트굿, 그리고 유속 히스토그램의 엄격한 기준을 적용한 ADCP 후처리방법을 적용하여 복원하였다. 또한, 같은 수로에 위치한 두 정점에서 이류하는 퇴적물의 농도피크시간을 토대로 퇴적물의 이류속도(Sediment Advection Speed)를 계산하여 방류수 이류속도를 비교 검증하였다. 퇴적물의 이류속도를 방류시 ADCP의 표층유속과 비교하였을 때, 방류량이 $2.0{\times}10^7$톤 보다 크면 두 속도값이 유사하고, 그보다 적을 경우에는 퇴적물의 이류속도가 약간 크게 산정되는 것을 볼 수 있었다. 방류가 발생할때 담수이류속도(Freshwater Advection Speed)는 바닥으로부터 $0.8{\times}$수심의 유속보다 평균 0.8 m/s 정도 크기 때문에, 방류가 증가하는 시기에 새롭게 계산된 방류수의 속도를 포함한 순유출량(=수심 및 조석주기로 적분된 흐름)을 계산하면, 그 방향이 하구언으로 들어오는 방향에서 빠져나가는 방향으로 바뀌는 것을 확인할 수 있었다. 또한, 표층 담수의 속도가 더해짐으로써 표층 속도쉬어와 리차드슨 수의 분포가 바뀜을 관찰할 수 있었기 때문에 표층 해수의 안정도를 해석함에 있어 실제 방류수 유속의 중요성을 알 수 있었다. 향후 유속과 함께 수온과 염분의 장기적인 관측이 수행된다면 담수 방류에 따른 성층의 생성과 소멸, 그리고 관련 부유퇴적물의 변동에 대해서도 보다 정확하게 파악할 수 있을 것으로 생각된다.
본 논문에서는 Semi-Lagrangian 이류 과정에서 역추적(Backward tracing)한 위치의 주변 속도를 Divergence-constrained MLS(Moving least squares)를 이용하여 보간하고 그 결과를 이류된 속도 데이터의 외력으로 적용해 연기 시뮬레이션의 난류 표현을 개선할 수 있는 새로운 프레임워크를 제안한다. 일반적인 MLS는 고차보간법이기 때문에 시간에 따른 연속성 보장이 안 되기 때문에 그 결과가 노이즈한 형태로 나타난다. 본 논문에서는 연기의 원본 속도와 제안하는 기법을 통해 생성된 속도 간의 각도 변화를 통해 난류를 생성하며 이를 통해 안정적이고 연기의 밀도를 이류시킨다.
자연 현상에서 나타나는 연기나 난류의 움직임을 사실적으로 시뮬레이션을 할 때 Navier-Stokes 방정식을 이용한다. 이 방정식을 이용한 구현은 방대한 연산량과 계산의 복잡성으로 인하여 실시간 시뮬레이션이 어렵다. 이 때문에 실시간 처리를 위하여 복잡한 수식을 근사화한다. 유체 시뮬레이션의 이류(advect) 과정에서 근사화를 위해 Semi-Lagrangian 방법을 이용할 때, 연기 시뮬레이션은 시간이 지남에 따라 밀도가 현저히 줄어들고 소규모의 소용돌이(small-scale vorticity) 현상이 급격히 감소하는 등의 수치적 소실이 발생한다. 본 논문에서는 이 문제를 해결하기 위해 이류항(advection term)을 계산할 때 새로운 수치적 방법을 제안한다. 본 논문에서는 이류항의 값을 구할 때, 현재 격자 주변의 값 중에서 다음 단계에 현재 격자의 위치로 오는 속도를 가진 격자를 찾아, 그 격자의 속도를 이류 속도 벡터로 활용한다. 이는 밀도와 소용돌이 현상의 수치적 소실을 줄여서 사실성을 높이고 실시간 처리도 가능하게 한다. 또한 본 논문에서는 GPU 구현을 통해 벡터 연산 등의 효율성을 높이며 시뮬레이션의 속도를 향상시킨다.
유출수문곡선은 강우량, 강우강도, 강우지속시간, 강우이동방향 및 이동속도와 같은 강우발생특성과 강수대의 공간적 이류방향과 유역형상과의 상호작용에 의하여 영향을 받으며, 특히 강우의 이류과정에서 나타나는 시간적, 공간적인 분포는 유출에 영향을 미치는 중요한 인자이다. 일반적으로 유출해석 기본이론은 연속방정식과 운동방정식으로서 운동파가정(kinematic wave analogy)을 기반으로 한 집중수문모형(lumped hydrologic model)에 의하여 수행되고 있지만 집중형 모형은 한 매개변수에 여러 가지의 물리적 과정을 개념화하여 담고 있기 때문에 유출과정에 대한 섬세한 모형화의 제약으로 인하여 강우의 이류과정에 따른 유출변화특성을 모의하기가 어렵다. 본 연구에서는 완전 분포형 수문동력학적 강우-유출 모형을 사용하여 강우의 이류특성을 반영할 수 있는 유출 모델을 구성하고, 강우의 이류특성에 따른 유역 출구에서의 유출수문곡선의 변화과정을 살펴보고 상관관계를 분석하였다.
자연 현상에서 나타나는 연기나 난류의 움직임을 사실적으로 시뮬레이션하기 위해서는 Navier-Stokes 방정식을 사용할 수 있다. 이 방정식을 이용한 구현은 방대한 연산량과 계산의 복잡성으로 인하여 실시간 시뮬레이션이 어렵다. 실시간 처리를 위해서는 Navier-Stokes 방정식의 관사 형태를 사용하는 것이 일반적이다. 유체 시뮬레이션의 이류(advect) 과정을 근사화하기 위해, Semi-Lagrangian 방법을 이용하면, 연기 시뮬레이션의 경우는 시간이 지남에 따라 밀도가 현저히 줄어들고, 소규모의 소용돌이(small-scale vorticity) 현상 등을 표현하기가 어렵다. 본 논문에서는 이 문제를 해결하기 위해 이류항(advection term)을 계산하는 새로운 수치해석 방법을 제안한다. 이 방법에서는 이류항의 값을 구할 때, 격자(grid) 중심의 현재 속도에 비례하는 임계영역을 격자 주변에 선정하고, 임계영역 내에 있는 격자들 중에서 현재 격자의 위치로 이류하는 속도를 가진 격자를 추적하여, 그 격자에서의 속도를 현재 격자의 이류속도 벡터로 사용한다. 이는 밀도와 소용돌이 현상의 수치적 소실을 줄여서, 사실성을 높이면서도, 실시간 처리가 가능하다. 본 논문에서는 GPU 구현을 통해 벡터 연산 등의 효율성을 높임으로써, 제안하는 방법의 실시간이 가능함을 보인다.
본 연구에서는 가장 다순한 내부혼합형 이류체분사노즐의 기류속도, 액체유량, 노즐직경 및 혼합길이, 기액접촉각을 변화시켜 평균입경(SMD), 분무각, 입도분포, 분 무분사량분포 등을 조사하여 노즐형상에 따른 분무특성의 변화를 자세히 밝혀, 분무특 성을 조절할 수 있는 이류체분사 노즐의 설계에 대한 기초적 자료를 제시하고자 한다.
Correlations of drop size and velocity in a spray from the disintegration of liquid jet and liquid film from an internal mixing twin-fluid atomizer, were determined by phase Doppler method. The distribution pattern of Sauter mean diameter(SMD) in a spray was changed by a behavior of liquid flow. As smaller droplets became faster and slower easily by the surrounding conditions, the correlation between drop size and mean velocity was found to be varied as next 3 steps; firstly smaller droplets have a higher mean velocity at the area near atomizer, droplets have almost the same mean velocity and finally larger droplets have a higher mean velocity at the area far from an atomizer.
기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.
일반적으로 사실성 있는 유체를 시뮬레이션하기 위해 Navier-Stokes 방정식을 사용한다. Euler 구조에서 Navier-Stokes 방정식을 풀 때, 이 류항은 비선형이어서 계산이 복잡하기 때문에 근사화한 모델로 Semi-Lagrangian 방법을 사용한다. Semi-Lagrangian 방법에서는 먼저 이류하 는 위치를추적하고, 추적한 위치에서 값을 보간해서 사용한다. Stam이 제안한 방법으로 계산할 경우, 이 과정에서 수치적 소실이 많이 발생하 기 때문에 수치적 소실을 보정하려는 노력들이 있어 왔다. 그러나 대부분의 경우에 보간하는 과정에서의 소실을 줄이려는 노력이거나, 입자를 같이 사용하는 방법이었다. 따라서 본 논문에서는 Euler 구조에서 다른 추가나 변형을 가하지 않고 이류항의 연산에서 추적법을 개선함으로 수 치적 소실을 줄이는 방법을 제안한다. 우리의 방법에서는 현재 격자의 속도로 역추적하는 기존의 방법이 아니라, 현재의 격자로 오게 될 속도 를 가진 격자를 찾아서, 그 격자의 물리량들을 선형 보간하여 사용한다. 이는 직관적으로 생각할 때, 어느 지점의 물리량은 그 지점의 속도로 인해 다음 단계에 다른 지점에 있게 된다는 사실을 그대로 적용한 것이다. 본 논문에서 제안한 방법으로 기체를 시뮬레이션 했을 때 수치적 소 실이 줄었으며, 그로 인해 사실성을 높이면서도 실시간 처리가 가능했다.
The AE measurement is one of the most convenient methods for detecting contacts between the slider and the disk. The AE method has been widely used in the investigation of the tribology of sliding interfaces due to its convenience. We examined the relationship between the AE signal and the flying height of a slider. We investigated the influence of the disk linear velocity on the AE rms signal by using the AE measurement system. The experiment also gives the relationship between the take-off velocity and the disk surface conditions. To investigate the behavior of the slider further, the variances of the AE signals are analyzed. The experimental results indicate that the increase in the magnitude of the AE rms signal does not necessarily mean the slider/disk contacts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.