• 제목/요약/키워드: 이러닝 시스템

검색결과 1,297건 처리시간 0.038초

소셜 네트워크 기반 학습자 생성 콘텐츠를 이용한 이러닝 시스템 (E-learning System using Learner Created Contents based on Social Network)

  • 장재경;김호성
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.17-24
    • /
    • 2009
  • 웹2.0의 UCC와 개방 개념에 기반한 참여적 설계방법을 도입하여 학습자의 적극적인 참여를 이끌어 자기주도적 학습을 성취할 수 있는 새로운 이러닝 모델을 제시하고자 한다. 학습자는 문단 단위의 마이크로 콘텐츠 생성에 적극적으로 참여하고, 자신의 지적능력, 학습목표, 학습성향 등을 고려하여 다양한 영역의 마이크로콘텐츠를 자신의 학습전략에 맞춰 직접 재구성함으로써 학습자 중심의 학습이 이루어질 수 있도록 한다. 학습자 맞춤형 학습콘텐츠로 재구성하기 위하여 학습자는 학습자들간의 소셜 네트워크를 활용하여 필요한 마이크로콘텐츠를 선택하며 학습자들간의 유대감을 형성하여 높은 학습효과를 기대할 수 있다.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.9-17
    • /
    • 2023
  • 본 논문에서는 베어링의 결함 진단을 위한 단일 클래스 분류의 진동 이상 탐지 시스템을 제안한다. 베어링 고장으로 인해 발생하는 경제적 및 시간적 손실을 줄이기 위해 정확한 결함 진단시스템은 필수적이며 문제 해결을 위해 딥러닝 기반의 결함 진단 시스템들이 널리 연구되고 있다. 그러나 딥러닝 학습을 위한 실제 데이터 채집 환경에서 비정상 데이터 확보에 어려움이 있으며 이는 데이터 편향을 초래한다. 이에 정상 데이터만 활용하는 단일 클래스 분류 방법을 활용한다. 일반적인 방법으로는 AutoEncoder를 통한 압축과 복원 과정을 학습하여 진동 데이터의 특성을 추출한다. 추출된 특성으로 단일 클래스 분류기를 학습하여 이상 탐지를 실시한다. 하지만 이와 같은 방법은 진동 데이터의 주파수 특성을 고려하지 않아서 진동 데이터의 특성을 효율적 추출할 수 없다. 이러한 문제를 해결하기 위해 진동 데이터의 주파수 특성을 고려한 AutoEncoder 모델을 제안한다. 분류 성능은 accuracy 0.910, precision 1.0, recall 0.820, f1-score 0.901이 나왔다. 주파수 특성을 고려한 네트워크 설계로 기존 방법들보다 우수한 성능을 확인하였다.

딥러닝 형상관리를 위한 블록체인 시스템 설계 (Design for Deep Learning Configuration Management System using Block Chain)

  • 배수환;신용태
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.201-207
    • /
    • 2021
  • 머신러닝의 한 종류인 딥러닝은 각 학습 과정을 진행할 때, 가중치를 변경하면서 학습을 수행한다. 딥러닝을 수행할때 대표적으로 사용되는 Tensor Flow나 Keras의 경우 학습이 종료된 결과를 그래프 형태로 제공한다. 이에 과다학습으로 인한 퇴화 현상 또는 가중치의 잘못된 설정으로 인해 학습 결과에 오류가 발생하는 경우, 해당 학습 결과를 폐기해야한다. 이에 기존 기술은 학습 결과를 롤백하는 기능을 제공하고 있지만, 롤백 기능은 최대 5회 이내의 결과로 제한된다. 또한, 딥러닝의 모든 과정을 기록하고 있는 것이 아니기 때문에 값을 추적하기 어렵다. 이를 해결하기 위해 MLOps의 개념을 적용한 기술이 존재하지만. 해당 기술에서는 이전 시점으로 롤백하는 기능을 제공하지 않는다. 본 논문에서는 기존 기술의 문제점을 해결하기 위해 학습 과정의 중간 값을 블록체인으로 관리하여 학습 중간 과정을 기록하고, 오류가 발생할 경우 롤백할 수 있는 시스템을 구성한다. 블록체인의 기능 수행을 위해서 딥러닝 과정 및 학습 결과 롤백은 Smart Contract를 작성하여 동작하도록 설계하였다. 성능평가는 기존의 딥러닝 방식의 롤백 기능을 평가하였을 때, 제안방식은 100%의 복구율을 가지는 것에 비교하여 기존 기법에서는 6회 이후에 복구율이 감소되어 50회일 때 10%까지 감소하는 것을 확인하였다. 또한, 이더리움 블록체인의 Smart Contract를 사용할 때, 블록 1회 생성 시 157만원의 금액이 지속적으로 소모되는 것을 확인하였다.

머신러닝 기법을 활용한 인공위성 자료 기반 고해상도 토지피복 분류: 국내 내륙습지를 중심으로 (Satellite-derived high-resolution land cover classification using machine learning techniques: Focusing on inland wetlands in Korea)

  • 김범서;황승현;성지미;김현준;백종진;전창현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.423-423
    • /
    • 2023
  • 습지 생태계는 탄소저장고, 대기 온·습도 조절 등의 기능을 수행하는 만큼 면밀한 관리가 요구된다. 습지의 규모와 생태계는 밀접한 연관성을 가지므로 그 규모를 우선적으로 파악할 필요가 있으며, 이를 위해 지표면의 상태를 산지, 습지, 수역 등의 항목으로 구분한 토지피복지도가 고려될 수 있다. 현재, 환경부에서 운영 중인 환경공간정보서비스(https://egis.me.go.kr/)에서는 각각 30 m, 5 m, 1 m의 공간 해상도와 7, 22, 41가지 분류 항목을 갖는 대분류, 중분류, 세분류로 구분된 토지피복지도를 제공하며 이러한 자료들은 모두 1년 이상의 시간 해상도를 갖는다. 습지의 경우, 계절에 따른 환경 변화로 인한 규모의 변동성이 크게 나타날 수 있기 때문에 1년 이하의 시간 해상도를 갖는 고품질 토지피복 분류 정보가 요구된다. 따라서 본 연구에서는 기존 자료의 낮은 시간 해상도 보완을 목표로, 1개월과 30 m의 시·공간 해상도를 갖는 토지피복지도를 구축하기 위한 방법론을 제안하고자 한다. 이를 위해 Landsat-8 등과 같은 다양한 인공위성 자료를 수집하고, Support Vector Machine 등과 같은 머신러닝 기법을 적용하였다. 최종적으로 습지보전법에서 지정한 습지보호지역 중 내륙습지 26개소를 대상으로, 본 연구로부터 산출된 토지피복지도를 기존 환경공간정보서비스 내 대분류 토지피복지도와 비교·평가하였다.

  • PDF

머신러닝을 활용한 주식 투자 시스템 구현 (Development of Stock Investment System Using Machine Learning)

  • 남기백;장정식;오훈;김태형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.810-812
    • /
    • 2017
  • 최근 기계학습에 대한 관심이 높아지면서 금융 분야에서는 인공지능을 이용하여 투자 포트폴리오를 제안하는 로보어드바이저(robo-advisor)를 출시하고 있다. 이는 고객에게 저렴한 수수료를 제공하며 높은 접근성, 인건비의 절감 등의 장점으로 이를 도입하여 다양한 상품을 개발하고 있다. 본 연구에서는 머신러닝 알고리즘인 SVM(support vector machine)과 kNN(k-nearest neighbor)을 활용하여 매월 12개월 이전의 KOSPI 지수 데이터를 학습시킨 후 예측하는 투자 시스템을 구현하였다. 실험결과 SVM이 2.90413배의 성적으로 가장 우수했으며 수익률은 Precision(예측정확도)와 비례함을 보였다. 또한 수익곡선은 추세에 따라 유사한 형태를 보인 성과를 도출하였다.

시니어 라이프 로깅을 위한 심미적 특징 기반의 행동 요약 시스템 (Aesthetic Feature-based Activity Summarization for Senior Life Logging)

  • 김선대;류일웅;유재성;굴람 무즈타바;박은수;김승환;류은석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.25-28
    • /
    • 2019
  • 본 논문은 시니어 라이프 로깅을 위한 데이터베이스를 효과적으로 구축하기 위해 영상의 심미적 특징을 통한 행동 별 영상 요약을 소개한다. 실내의 TV 앞에서 오랜 시간을 보내는 시니어의 상태를 체크하기 위해 일반 카메라 또는 360 카메라를 통해 HD 급 화질 이상의 영상을 주기적으로 수집하고, 이를 머신러닝 또는 딥러닝 기반의 행동인식 시스템에 이용하기 위한 전처리 단계에 응용할 수 있는 방법을 서술한다. 이 연구에서는 영상 데이터에서 얻을 수 있는 색상을 이용한 HSV 히스토그램, 영상신호의 Jitter 를 줄이는 고정도, 움직임 에너지 등을 이용하여 짧은 시간 내에 행동별로 구분된 영상(샷, shot)을 자르고 요약하는 방법을 서술한다.

  • PDF

뇌전도와 딥러닝을 활용한 자폐 스펙트럼 장애 아동의 정서 회복 증강현실 시스템 (Emotion Recovery AR System for Children with Autism Spectrum Disorder Using EEG and Deep-Learning)

  • 송다원;박재철;장한길;황정태;이준표
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.529-530
    • /
    • 2021
  • 본 논문에서는 MindWave와 AR 헤드셋 기기를 연동하여 자폐 스펙트럼 장애 아동이 불안감을 느낄 때 발산되는 뇌파 신호를 실시간으로 감지한다. 또한 실시간 객체 검출을 위한 YOLOv5 알고리즘을 통해 시각적 정보를 수집하여 해당 아동이 불안감을 느끼는 원인을 파악하고 이에 맞는 해결책을 AR 형태로 제시하며 자폐 스펙트럼 장애 아동이 불안감을 느끼면 보호자에게 알림을 전송하는 앱을 구현한다. 이를 통해 자폐 스펙트럼 장애 아동의 뇌파 안정과 정서 회복을 돕고 실생활에서 발생할 수 있는 돌발 상황을 방지할 수 있는 시스템을 제안한다.

  • PDF

크라우드소싱 기반의 딥러닝 분류 알고리즘을 이용한 댓글 분류 시스템 (Comment Classification System using Deep Learning Classification Algorithm based on Crowdsourcing)

  • 박희지;하지민;박혜림;강정호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.864-867
    • /
    • 2021
  • 뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.

딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법 (A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning)

  • 김가현 ;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

메타버스 환경에서의 딥 러닝 기반 알고리즘을 활용한 상표권 탐지 시스템 (Trandemark detection system using deep learning-based algorithms in a metaverse environment)

  • 이지은;이형수;신용태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.1-4
    • /
    • 2024
  • 코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.

  • PDF