웹2.0의 UCC와 개방 개념에 기반한 참여적 설계방법을 도입하여 학습자의 적극적인 참여를 이끌어 자기주도적 학습을 성취할 수 있는 새로운 이러닝 모델을 제시하고자 한다. 학습자는 문단 단위의 마이크로 콘텐츠 생성에 적극적으로 참여하고, 자신의 지적능력, 학습목표, 학습성향 등을 고려하여 다양한 영역의 마이크로콘텐츠를 자신의 학습전략에 맞춰 직접 재구성함으로써 학습자 중심의 학습이 이루어질 수 있도록 한다. 학습자 맞춤형 학습콘텐츠로 재구성하기 위하여 학습자는 학습자들간의 소셜 네트워크를 활용하여 필요한 마이크로콘텐츠를 선택하며 학습자들간의 유대감을 형성하여 높은 학습효과를 기대할 수 있다.
본 논문에서는 베어링의 결함 진단을 위한 단일 클래스 분류의 진동 이상 탐지 시스템을 제안한다. 베어링 고장으로 인해 발생하는 경제적 및 시간적 손실을 줄이기 위해 정확한 결함 진단시스템은 필수적이며 문제 해결을 위해 딥러닝 기반의 결함 진단 시스템들이 널리 연구되고 있다. 그러나 딥러닝 학습을 위한 실제 데이터 채집 환경에서 비정상 데이터 확보에 어려움이 있으며 이는 데이터 편향을 초래한다. 이에 정상 데이터만 활용하는 단일 클래스 분류 방법을 활용한다. 일반적인 방법으로는 AutoEncoder를 통한 압축과 복원 과정을 학습하여 진동 데이터의 특성을 추출한다. 추출된 특성으로 단일 클래스 분류기를 학습하여 이상 탐지를 실시한다. 하지만 이와 같은 방법은 진동 데이터의 주파수 특성을 고려하지 않아서 진동 데이터의 특성을 효율적 추출할 수 없다. 이러한 문제를 해결하기 위해 진동 데이터의 주파수 특성을 고려한 AutoEncoder 모델을 제안한다. 분류 성능은 accuracy 0.910, precision 1.0, recall 0.820, f1-score 0.901이 나왔다. 주파수 특성을 고려한 네트워크 설계로 기존 방법들보다 우수한 성능을 확인하였다.
머신러닝의 한 종류인 딥러닝은 각 학습 과정을 진행할 때, 가중치를 변경하면서 학습을 수행한다. 딥러닝을 수행할때 대표적으로 사용되는 Tensor Flow나 Keras의 경우 학습이 종료된 결과를 그래프 형태로 제공한다. 이에 과다학습으로 인한 퇴화 현상 또는 가중치의 잘못된 설정으로 인해 학습 결과에 오류가 발생하는 경우, 해당 학습 결과를 폐기해야한다. 이에 기존 기술은 학습 결과를 롤백하는 기능을 제공하고 있지만, 롤백 기능은 최대 5회 이내의 결과로 제한된다. 또한, 딥러닝의 모든 과정을 기록하고 있는 것이 아니기 때문에 값을 추적하기 어렵다. 이를 해결하기 위해 MLOps의 개념을 적용한 기술이 존재하지만. 해당 기술에서는 이전 시점으로 롤백하는 기능을 제공하지 않는다. 본 논문에서는 기존 기술의 문제점을 해결하기 위해 학습 과정의 중간 값을 블록체인으로 관리하여 학습 중간 과정을 기록하고, 오류가 발생할 경우 롤백할 수 있는 시스템을 구성한다. 블록체인의 기능 수행을 위해서 딥러닝 과정 및 학습 결과 롤백은 Smart Contract를 작성하여 동작하도록 설계하였다. 성능평가는 기존의 딥러닝 방식의 롤백 기능을 평가하였을 때, 제안방식은 100%의 복구율을 가지는 것에 비교하여 기존 기법에서는 6회 이후에 복구율이 감소되어 50회일 때 10%까지 감소하는 것을 확인하였다. 또한, 이더리움 블록체인의 Smart Contract를 사용할 때, 블록 1회 생성 시 157만원의 금액이 지속적으로 소모되는 것을 확인하였다.
습지 생태계는 탄소저장고, 대기 온·습도 조절 등의 기능을 수행하는 만큼 면밀한 관리가 요구된다. 습지의 규모와 생태계는 밀접한 연관성을 가지므로 그 규모를 우선적으로 파악할 필요가 있으며, 이를 위해 지표면의 상태를 산지, 습지, 수역 등의 항목으로 구분한 토지피복지도가 고려될 수 있다. 현재, 환경부에서 운영 중인 환경공간정보서비스(https://egis.me.go.kr/)에서는 각각 30 m, 5 m, 1 m의 공간 해상도와 7, 22, 41가지 분류 항목을 갖는 대분류, 중분류, 세분류로 구분된 토지피복지도를 제공하며 이러한 자료들은 모두 1년 이상의 시간 해상도를 갖는다. 습지의 경우, 계절에 따른 환경 변화로 인한 규모의 변동성이 크게 나타날 수 있기 때문에 1년 이하의 시간 해상도를 갖는 고품질 토지피복 분류 정보가 요구된다. 따라서 본 연구에서는 기존 자료의 낮은 시간 해상도 보완을 목표로, 1개월과 30 m의 시·공간 해상도를 갖는 토지피복지도를 구축하기 위한 방법론을 제안하고자 한다. 이를 위해 Landsat-8 등과 같은 다양한 인공위성 자료를 수집하고, Support Vector Machine 등과 같은 머신러닝 기법을 적용하였다. 최종적으로 습지보전법에서 지정한 습지보호지역 중 내륙습지 26개소를 대상으로, 본 연구로부터 산출된 토지피복지도를 기존 환경공간정보서비스 내 대분류 토지피복지도와 비교·평가하였다.
최근 기계학습에 대한 관심이 높아지면서 금융 분야에서는 인공지능을 이용하여 투자 포트폴리오를 제안하는 로보어드바이저(robo-advisor)를 출시하고 있다. 이는 고객에게 저렴한 수수료를 제공하며 높은 접근성, 인건비의 절감 등의 장점으로 이를 도입하여 다양한 상품을 개발하고 있다. 본 연구에서는 머신러닝 알고리즘인 SVM(support vector machine)과 kNN(k-nearest neighbor)을 활용하여 매월 12개월 이전의 KOSPI 지수 데이터를 학습시킨 후 예측하는 투자 시스템을 구현하였다. 실험결과 SVM이 2.90413배의 성적으로 가장 우수했으며 수익률은 Precision(예측정확도)와 비례함을 보였다. 또한 수익곡선은 추세에 따라 유사한 형태를 보인 성과를 도출하였다.
본 논문은 시니어 라이프 로깅을 위한 데이터베이스를 효과적으로 구축하기 위해 영상의 심미적 특징을 통한 행동 별 영상 요약을 소개한다. 실내의 TV 앞에서 오랜 시간을 보내는 시니어의 상태를 체크하기 위해 일반 카메라 또는 360 카메라를 통해 HD 급 화질 이상의 영상을 주기적으로 수집하고, 이를 머신러닝 또는 딥러닝 기반의 행동인식 시스템에 이용하기 위한 전처리 단계에 응용할 수 있는 방법을 서술한다. 이 연구에서는 영상 데이터에서 얻을 수 있는 색상을 이용한 HSV 히스토그램, 영상신호의 Jitter 를 줄이는 고정도, 움직임 에너지 등을 이용하여 짧은 시간 내에 행동별로 구분된 영상(샷, shot)을 자르고 요약하는 방법을 서술한다.
본 논문에서는 MindWave와 AR 헤드셋 기기를 연동하여 자폐 스펙트럼 장애 아동이 불안감을 느낄 때 발산되는 뇌파 신호를 실시간으로 감지한다. 또한 실시간 객체 검출을 위한 YOLOv5 알고리즘을 통해 시각적 정보를 수집하여 해당 아동이 불안감을 느끼는 원인을 파악하고 이에 맞는 해결책을 AR 형태로 제시하며 자폐 스펙트럼 장애 아동이 불안감을 느끼면 보호자에게 알림을 전송하는 앱을 구현한다. 이를 통해 자폐 스펙트럼 장애 아동의 뇌파 안정과 정서 회복을 돕고 실생활에서 발생할 수 있는 돌발 상황을 방지할 수 있는 시스템을 제안한다.
뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.
대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.
코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.