• 제목/요약/키워드: 이러닝 서비스

검색결과 451건 처리시간 0.021초

아프리카 지역의 교육 여건에 따른 블록형 스마트 교실 구축방안 연구 (A Study on the Development of Block Type Smart Classroom under the Educational Conditions in Africa)

  • 최종천;노인호;유갑상
    • 디지털융복합연구
    • /
    • 제17권3호
    • /
    • pp.227-234
    • /
    • 2019
  • 본 연구는 교육인프라가 취약한 아프리카 국가들의 교육 콘텐츠, 교실환경, 그리고 ICT기술에 대한 종합적인 보급을 위한 블록형 스마트교실 모델 제시를 목표로 한다. 수업관리시스템, 전력관리시스템 및 교실환경 관리시스템을 통합하는 상황별 솔루션을 제시하고, 아프리카 지역의 국가별 경제적, 비경제적 여건에 최적화가 가능한 융합 모델이 될 것이다. 이는 기존의 서비스, 콘텐츠, 솔루션에 대한 독립적 연구개발이나 단일 컨테이너로 보급된 기존교실과는 차별화되는 효율적인 모델이 될 수 있을 것이다. 이러한 통합 연구 과정을 통해 기존 컨테이너교실에서 나타나는 공간과 기능적 한계를 극복하고 이러닝 기술 고도화에 대비한 융통성 있는 공간을 구축한다. 향후 보다 다양한 지역의 교육 및 인프라 여건에 부합하는 성능과 모델에 대한 탐구로 후속 연구의 깊이와 범위의 확장이 가능할 것이다.

인공지능형 전훈분석기술: 'L2-OODA 앙상블 알고리즘'을 중심으로 (Technology of Lessons Learned Analysis using Artificial intelligence: Focused on the 'L2-OODA Ensemble Algorithm')

  • 양성실;신진
    • 융합보안논문지
    • /
    • 제21권2호
    • /
    • pp.67-79
    • /
    • 2021
  • 전훈이란 군사용어로서 전투발전분야의 교육과 현실에서 문제점이 확인되거나 개선이 필요한 요소를 찾아서 미래의 발전을 도모하는 모든 활동이다. 이 논문에서는 전훈활동을 추진하는데 드러나는 문제점, 즉 분석시 장기간 소요, 예산 문제, 전문가 필요성 등을 해결하고자 실제 사례를 제시하고 인공지능 분석 추론기술을 적용하는 데 초점을 맞춘다. 이미 실용화되어 사용 중인, 인지 컴퓨팅 관련 기술을 활용한 인공지능 법률자문 서비스가 전훈의 문제점을 해결하는데 가장 적합한 사례로 판단했다. 이 논문은 인공지능을 활용한 지능형 전훈분석 추론기술의 효과적인 적용방안을 제시한다. 이를 위해, 전훈분석 정의 및 사례, 인공지능의 머신러닝으로 진화, 인지 컴퓨팅 등 이론적 배경을 살펴보고, 새롭게 제안한 L2-OODA 앙상블 알고리즘을 이용해 국방분야 신기술에 적용함으로써 현존전력 개선 및 최적화를 구현하는데 기여하고자 한다.

이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘 (Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm)

  • 윤범진;유승열
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.377-383
    • /
    • 2021
  • 최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.

국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델 (Black Ice Formation Prediction Model Based on Public Data in Land, Infrastructure and Transport Domain)

  • 나정호;윤성호;오효정
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.257-262
    • /
    • 2021
  • 매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축하였다. 수집된 요인들의 상관관계를 분석하여 블랙아이스 예측에 유효한 영향을 주는 21개 요인을 선별, 다양한 학습모델을 조합하는 방법을 통해 블랙아이스 발생 예측 모델을 구현하였다. 이를 통해 개발된 예측 모델은 최종적으로 노선별 블랙아이스 위험지수 도출에 사용되어 블랙아이스 발생 경고 서비스를 위한 사전 연구로 활용될 것이다.

문화기술(CT) 연구 동향 분석: 국가연구과제를 중심으로 (Analyzing the Trends of Culture Technology using National Research Projects)

  • 이범훈;전우진;금영정
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.64-76
    • /
    • 2021
  • 디지털기술융합사회에서 문화기술의 중요도가 커지고 있지만, 이에 비해 문화기술의 동향을 정확하게 파악하고 분석하고자 하는 시도가 부족한 실정이다. 특히 문화기술의 경우 국가 차원에서 주도하여 발전해 왔으며, 이에 문화기술을 분석함에 있어 국가적 관점을 견지하는 것이 매우 중요하다. 따라서 본 연구는 국가연구과제를 바탕으로 문화기술 동향을 분석하고 향후 문화기술 발전에 대한 시사점을 제공하는 데 초점을 맞추었다. 본 연구는 국가과학기술정보서비스(NTIS)에서 문화기술 연구과제 데이터를 수집하여 연구내용에 대한 키워드 네트워크를 분석하고, 군집분석을 통해 문화기술 과제를 유형화하고 그 특성을 분석하였다. 분석 결과 문화기술은 정보지식에서 디지털콘텐츠, 문화미디어로 발전하고 최근 머신러닝 기술에 접목하여 활발하게 활용되고 있는 것으로 나타났다. 최근에는 코로나19의 사회적 환경의 변화로 비대면 온라인 콘텐츠에 대한 수요로 AR, VR 등 다양한 문화산업에 대한 연구로 발전하고 있는 것을 확인하였다. 이를 통해 본 연구는 문화기술을 이해하고 그 동향을 분석하여, 문화기술의 혁신 가능성을 확인하기 위한 중요한 단서를 제공하였다.

단말 적응적 미디어 화면비 변환 시스템 (Device Adaptive Video Resolution Transform System)

  • 이승호;정진우;김성제
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1325-1328
    • /
    • 2022
  • 언제 어디서든 한 손으로 미디어 콘텐츠를 소비할 수 있게 해주는 모바일 기기들이 기존 전통적 미디어 콘텐츠 단말기였던 TV나 데스크톱 PC들을 대체하게 되면서 세로형 영상 콘텐츠에 대한 수요가 나날이 높아져 가고 있다. 이와 더불어 모바일 단말기 제조사들은 서로 간의 경쟁에서 앞서기 위해 제품 차별화 전략을 수립하고 모바일 사용자들의 요구 사항을 세세하게 맞추기 위한 결과, 저마다 다른 디스플레이 해상도 규격을 가진 모바일 기기들이 생산되고 있는 상황이다. 이에 미디어 콘텐츠 제작자들은 기존 가로형 영상 콘텐츠와 더불어 새롭게 요구되는 세로형 영상 콘텐츠들을 저마다 다른 해상도 규격에 맞추는데 많은 시간과 비용을 투자하고 있다. 더 나아가 모바일 단말기 해상도 규격과 맞지 않는 영상 콘텐츠를 시청하게 될 경우, 모바일 사용자 입장에서는 디스플레이 전체 영역을 뷰포트로 잡을 수 없어 시청 만족도가 떨어질 수 있다. 이에 본 논문은 한 번의 콘텐츠 제작을 통해서도 추가 비용 없이 다양한 디스플레이 규격을 가진 단말기들에 대해 맞춤형 콘텐츠 서비스 제공을 가능하게 하여 미디어 콘텐츠 소비자들에게 충분한 시청 몰입감을 제공해줄 수 있는 단말 적응적 미디어 화면비 변환 시스템을 제안한다. 단말 적응적 미디어 화면비 변환 시스템은 딥러닝 네트워크 모델과 이미지 관련 라이브러리를 기반으로 하여 설계한 시스템이며, 사용자가 시청하기 원하는 영역을 판단하고, 사용자가 원하는 뷰포트 종횡비에 따라 해당 영역을 잘라내어 사용자가 원하는 세로형 영상 콘텐츠를 제공해준다.

  • PDF

Text Classification Using Heterogeneous Knowledge Distillation

  • Yu, Yerin;Kim, Namgyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.29-41
    • /
    • 2022
  • 최근 딥 러닝 기술의 발전으로 방대한 텍스트 데이터를 사전에 학습한 우수한 성능의 거대한 모델들이 다양하게 고안되었다. 하지만 이러한 모델을 실제 서비스나 제품에 적용하기 위해서는 빠른 추론 속도와 적은 연산량이 요구되고 있으며, 이에 모델 경량화 기술에 대한 관심이 높아지고 있다. 대표적인 모델 경량화 기술인 지식증류는 교사 모델이 이미 학습한 지식을 상대적으로 작은 크기의 학생 모델에 전이시키는 방법으로 다방면에 활용 가능하여 주목받고 있지만, 당장 주어진 문제의 해결에 필요한 지식만을 배우고 동일한 관점에서만 반복적인 학습이 이루어지기 때문에 기존에 접해본 문제와 유사성이 낮은 문제에 대해서는 해결이 어렵다는 한계를 갖는다. 이에 본 연구에서는 궁극적으로 해결하고자 하는 과업에 필요한 지식이 아닌, 보다 상위 개념의 지식을 학습한 교사 모델을 통해 지식을 증류하는 이질적 지식증류 방법을 제안한다. 또한, 사이킷런 라이브러리에 내장된 20 Newsgroups의 약 18,000개 문서에 대한 분류 실험을 통해, 제안 방법론에 따른 이질적 지식증류가 기존의 일반적인 지식증류에 비해 학습 효율성과 정확도의 모든 측면에서 우수한 성능을 보임을 확인하였다.

CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지 (Fake News Detection Using CNN-based Sentiment Change Patterns)

  • 이태원;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.179-188
    • /
    • 2023
  • 최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.

레스토랑 카테고리와 온라인 소비자 리뷰를 이용한 딥러닝 기반 레스토랑 추천 시스템 개발 (Developing a Deep Learning-based Restaurant Recommender System Using Restaurant Categories and Online Consumer Review)

  • 구하은;이청용;김재경
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.27-46
    • /
    • 2023
  • 최근에는 외식 산업의 발달과 레스토랑 수요의 증가로 인해 레스토랑 추천 시스템 연구가 활발하게 제안되고 있다. 기존 레스토랑 추천 시스템 연구는 정량적인 평점 정보 또는 온라인 리뷰의 감성분석을 통해 소비자의 선호도 정보를 추출하였는데 이는 소비자의 의미론적 선호도 정보는 반영하지 못한다는 한계가 존재한다. 또한, 레스토랑이 포함하는 세부적인 속성을 반영한 추천 시스템 연구는 부족한 실정이다. 이를 해결하기 위해 본 연구에서는 소비자의 선호도와 레스토랑 속성 간의 상호작용을 효과적으로 학습할 수 있는 딥러닝 기반 모델을 제안하였다. 먼저, 합성곱 신경망을 온라인 리뷰에 적용하여 소비자의 의미론적 선호도 정보를 추출했고, 레스토랑 정보에 임베딩 기법을 적용하여 레스토랑의 세부적인 속성을 추출했다. 최종적으로 요소별 연산을 통해 소비자 선호도와 레스토랑 속성 간의 상호작용을 학습하여 소비자의 선호도 평점을 예측했다. 본 연구에서 제안한 모델의 추천 성능을 평가하기 위해 Yelp.com의 온라인 리뷰를 사용한 실험 결과, 기존 연구의 다양한 모델과 비교했을때 본 연구의 제안 모델이 우수한 추천 성능을 보이는 것을 확인하였다. 본 연구는 레스토랑 산업의 빅데이터를 활용한 맞춤형 레스토랑 추천 시스템을 제안함으로써 레스토랑 연구 분야와 온라인 서비스 제공자에게 학술적 및 실무적 측면에서 다양한 시사점을 제공할 수 있을 것으로 기대한다.

인코더와 디코더에 기반한 합성곱 신경망과 순환 신경망의 새로운 하이브리드 접근법 (New Hybrid Approach of CNN and RNN based on Encoder and Decoder)

  • 우종우;김건우;최근호
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.129-143
    • /
    • 2023
  • 빅데이터 시대를 맞이하여 인공지능 분야는 괄목할만한 성장을 보이고 있으며 특히 딥러닝에 의한 이미지 분류 학습방법이 중요한 영역으로 자리하고 있다. 이미지 분류에서 많이 사용되어 온 CNN의 성능을 더욱 개선하기 위해 다양한 연구가 활발하게 진행되었는데, 이 중에서 대표적인 방법이 CRNN(Convolutional Recurrent Neural Network) 알고리즘이다. CRNN 알고리즘은 이미지 분류를 위한 CNN과 시계열적 요소를 인식하기 위한 RNN의 조합으로 구성되는데, CRNN의 RNN영역에서 사용하는 입력값은 학습 대상의 이미지를 합성곱과 풀링 기법을 적용하여 추출된 결과물을 flatten한 값이고, 이 입력값들은 이미지 내 동일 위상에 있는 픽셀값들이 서로 다른 순서로 나타나기 때문에, RNN에서 의도한 이미지 내 배열 순서를 제대로 학습하기 어렵다는 한계점을 지닌다. 따라서 본 연구는 인코더와 디코더의 개념을 응용한 CNN과 RNN의 새로운 하이브리드 방법을 제안하여, 이미지 분류 성능을 향상시키는 것을 목적으로 하였다. 본 연구에서는 다양한 알고리즘 비교 실험을 통해, 새로운 하이브리드 방법의 효과성을 검증하였다. 본 연구는 인코더와 디코더 개념의 적용 가능성을 넓히고, 제안한 방법이 기존 하이브리드 방법에 비해, 복잡도가 크게 증가하지 않아 모델 학습 시간과 인프라 구축 비용 측면에서 이점을 있다는 점에서 학문적 시사점을 가진다. 또한, 정확한 이미지 분류가 필요한 다양한 분야에서 제공되는 서비스의 품질을 높일 수 있는 가능성을 제시하였다는 점에서 실무적 시사점을 가진다.