이동객체 추적은 컴퓨터 비전 분야에서 오랜 시간 동안 연구가 진행되어 온 분야로 자율주행이나 운전 보조 시스템 등의 시스템에서 아주 중요한 역할을 수행하고 있다. 이동객체 추적 기술은 일반적으로 객체를 검출하는 검출기와 검출된 객체를 추적하는 추적기의 결합으로 이루어져 있다. 검출기는 다양한 데이터셋이 공개되어 사용되고 있기 때문에 쉽게 좋은 모델을 학습할 수 있지만, 추적기의 경우 상대적으로 공개된 데이터셋도 적고 직접 데이터셋을 구성하는 것도 검출기 데이터셋에 비해 굉장히 오랜 시간을 소요한다. 이에 검출기를 따로 개발하고, 별도의 추적기를 학습 기반이 아닌 방식을 활용하여 개발하는 경우가 많은데 이런 경우 두 개의 시스템이 차례로 작동하게 되어 전체 시스템의 속도를 느리게 하고 앞단의 검출기의 성능이 변할 때마다 별도로 추적기 또한 조정해줘야 한다는 단점이 있다. 이에 본 연구는 검출용 데이터셋만을 사용하여 검출과 추적을 동시에 수행하는 모델을 구성하는 방법을 제안한다. 데이터 증강 기술과 샴 네트워크를 사용하여 단일 이미지에서 객체를 검출 및 추적하는 방법을 연구하였다. 공개 데이터셋에 실험을 진행하여 학습 결과 높은 속도로 작동하는 이동객체 검출 및 추적기를 학습할 수 있음을 검증하였다.
무선 센서 네트워크 환경에서 이동 객체 추적 기법은 환경 모니터링이나 군사 지역에서 적의 이동을 추적하는 실제 응용을 위한 핵심적인 기반 기술이다. 기존 연구에서는 저밀도를 갖는 실제 센서 네트워크 환경에 의해 발생되는 감지 공백 영역을 고려하지 않았다. 따라서 많은 이동 객체 추적 실패가 발생하여 에너지 소모가 증가하였다. 이러한 문제를 해결하기 위해 본 논문에서는 저밀도 환경과 감지 공백 영역을 고려한 이동 객체 추적 기법을 제안한다. 제안하는 기법은 다항 회귀 분석을 이용해 객체의 경로를 예측하여 최소한의 센서 노드를 활성화시킨다. 또한 이동 객체 추적 실패가 발생할 경우 감지 공백 영역의 경계 노드만을 활성화 시키는 객체 추적 복구 기법을 수행한다. 이를 통해, 제안하는 기법은 에너지 소모량을 줄이고 감지 공백 영역 안에서도 높은 예측 정확도를 보장한다. 제안하는 기법이 기존 기법에 비해 이동 객체 추적에 소모되는 에너지를 평균 약 47% 감소시켰고, 센서 노드가 낮은 밀도로 배치된 상황에서 발생하는 감지 공백 영역에서도 평균 약 91%의 예측 정확도를 보였다.
본 논문은 스테레오 라인 CCD와 광원을 이용한 2차원 평면에서 이동객체를 인식하고 이동경로를 추적하는 시스템 구현이다. 시스템 구현은 카메라 이미지를 직접 처리하는 대신 두개의 라인 CCD 센서와 입력된 라인 이미지의 밝기를 비교하여 2차원 거리를 측정한다. 알고리듬은 이동객체감지, 경로추적과 좌표변환 기법을 적용한다. 객체의 이동경로를 효과적으로 감지하기 위하여 측정된 거리의 신뢰성을 평가하는 알고리즘을 개발하였다. 시스템을 구현하여 실험한 결과 5mm 인식율과 100ms 주기 이상의 이동객체경로 추적이 가능하였다.
본 논문에서는 복잡 배경을 포함한 비디오 영상에서 객체 변형 및 겹침에 강건한 칸투어 추적 방법을 제안한다. 복잡 배경에서의 칸투어 추출 문제를 해결하기 위해 텍스처 분석과 노이즈 필터링 과정을 거치며, 보다 객체 원형에 가까운 칸투어 추출을 위해 각 칸투어 포인터 간 최소 경로 측정 알고리즘을 적용한다. 객체 추적 방법에 있어서 추출된 칸투어 정보는 연속된 프레임 상에서 객체 움직임이 발생했을 때 추적 위치를 판별하기 위한 모션 벡터로 사용되며, 시점에 따라 형태가 변하는 상황을 포함한 팬, 틸트, 줌에도 안정적 추적이 가능하게 하기 위해, 폐곡선을 이루는 각 칸투어 포인터들의 움직임 벡터와 칸투어내 면적의 변화에서 측정되는 이동도 측정을 통하여 객체 위치 추적을 가능하게 하였다. 또한 매 추적 과정을 진행함에 있어서 다른 객체의 겹침 및 모양변형 발생여부 검사과정을 통하여, 안정적인 추적이 가능하게 하였다. 본 논문에서 제안한 방법의 성능을 검증하기 위해 다양한 배경을 갖는 복잡 배경에 존재하는 비정형 객체를 대상으로 실험하였고, 제안된 방법이 효율적임을 확인할 수 있었다.
본 연구는 이동 객체 추출 및 추적 방법 및 장치에 관한 것으로, 특히 인접 영상 간의 차영상을 이용하여 객체를 추출하고, 추출된 객체의 위치정보를 지속적으로 전달함으로써 적어도 하나의 이동 객체의 정확한 위치정보를 토대로 이동 객체를 추적하는 이동 객체 추출 및 추적 방법 및 장치에 관한 것이다. 사람과 컴퓨터의 상호작용의 표현에서 시작된 사람추적은 로봇학습, 객체의 카운팅, 감시 시스템 등의 많은 응용분야에서 사용되고 있으며, 특히 보안 시스템분야에서 카메라를 이용하여 사람을 인식하고 추적하여 위법행위를 자동적으로 찾아낼 수 있는 감시 시스템 개발의 중요성이 나날이 커져 가고 있다.
유비쿼터스 환경에서 모든 이동 객체들의 정확한 위치를 추적하는 것은 현실상 불가능하므로, 현실적인 대안으로 위치 추적 방법을 사용 찬다. 현재 위치 추적 방법들은 많이 개발되고 있지만 이것을 비교 실험할 수 있는 환경이 미흡한 실정이다. 이에, 본 논문에서는 여러 가지 위치 추적 방법을 비교 실험 할 수 있는 테스트 베드 시스템을 구현하였다. 또한 본 논문에서 구현한 테스트 베드 시스템에서 현재 나와 있는 여러 가지 위치 추적 방법을 실험을 통해 비교, 분석해 보았다.
최근 보안 감시 분야에서 영상처리를 이용한 객체 추적에 관한 연구가 활발히 이루어지고 있다. 기존 여러 대의 카메라를 이용한 보안 감시 시스템은 각각 독립적으로 운영되었다. 따라서 추적 객체가 다른 카메라의 감시영역으로 이동 시 계속해서 추적이 어려웠다. 이 문제를 해결하기 위해 본 논문은 다중 카메라에서 객체의 이동방향에 따라 자동으로 카메라의 제어권을 변경하는 방법을 제안한다. 제안방법은 객체를 검출하고 객체의 색상 정보와 방향 정보로 객체를 추적한다. 색상 정보는 hue를 이용하고 방향 정보는 광류를 이용하여 획득한다. 이때 광류는 전체 영상이 아닌 객체가 검출된 영역에만 적용하여 계산량을 줄여 실시간 추적이 가능하게 한다. 또한, 자동으로 객체를 추적함으로써 기존 카메라를 이용한 보안 감시 시스템의 불편함을 해결할 수 있다.
최근에 이동 객체의 위치를 추적하는 기술은 여러 응용 분야에서 중요성이 증대되고 있다. 그러나 지속적으로 움직이는 이동 객체의 위치를 추적하기 위해서는 매우 많은 수의 인덱스 변경 연산을 수행하여야 하므로 R-트리와 같은 전통적인 공간 인덱스 구조로는 처리하기 어렵다. 이러한 문제를 해결하기 위하여 객체의 움직임을 간단한 선형 함수로 가정하여 색인하는 연구들이 있어왔지만, 실제 응용에서는 객체의 움직임이 매우 복잡하므로 이러한 방법을 이용하기 적합하지 않다. 본 논문에서는 복잡한 움직임을 가지는 객체를 효율적으로 색인하기 위한 R-트리의 지연 갱신 기법을 제안한다. 이 기법은 객체가 이동할 때마다 트리의 구조를 변경하지 않고, 객체가 이전에 속해 있던 R-트리의 MBR(Minimum Bounding Rectangle)을 벗어날 때만 트리의 구조를 변경하므로 R-트리의 갱신 연산 비용을 크게 줄일 수 있다. 뿐만 아니라, 기본적인 R-트리의 구조와 연산을 그대로 이용하므로 다양한 R-트리 변종 트리에서도 쉽게 적용이 가능하고, R-트리를 이용하여 이미 구축되어 있는 다양한 응용 환경에 쉽게 이용할 수 있다.
본 논문은 고정영역에서 움직이는 객체를 검출하기 위한 방법으로 배경영상과 입력영상의 차를 이용하여 객체를 추출하고 추출된 객체의 이동을 추적하는 방법에 대해 제안하였다. 객체를 추출하는 방법으로 고정영역에 새로운 객체의 위치를 파악하기 위해 전체 영상의 픽셀을 연산에 참여시키는 것이 아니라 영상의 테두리에 설정된 영역의 픽셀들만을 연산에 참여시킨다. 따라서 중앙영역이 연산에서 제외되어 객체추출의 시간을 효과적으로 단축시킬 수 있었다. 또한 설정영역에서 객체를 추출하기 위하여 시작위치를 먼저 파악하고 시작위치로부터 객체의 가로와 세로의 크기를 추출함으로써 객체의 영역을 검출하였다. 이동된 객체의 추적에는 추출된 중심좌표를 이용하였다.
이동 객체에 대한 추적 기술은 최근 중요성이 강조되고 있는 동영상 이해에서 가장 핵심적인 기술의 하나라 할 수 있다. 하지만, 동영상이 가지는 조명의 불안정, 객체의 크기나 형태 변화, 카메라 움직임, 그리고 중첩 등으로 인해 동영상 내의 이동 객체 추적은 많은 어려움을 가지고 있다. 객체 추적의 가장 대표적인 종래의 방법인 칼만 필터와 파티클 필터의 문제점을 개선하는 방법으로 스웜 기반의 방법이 제안되어 있으나 동적으로 변화하는 이동 객체의 특징을 반영하는 개선된 알고리즘이 요구된다. 본 논문에서는 이러한 특징을 반영하여 파티클 스웜 최적화 방법에서 사용되는 파라미터 중 가중치 값을 동적으로 변화하는 적응적 파라미터 제어 방법을 제안한다. 각 파티클을 특성에 따라 3가지 종류로 구분하고 각각 서로 다른 가중치 값을 부여하는 방식으로 객체 추적의 성능을 개선할 수 있다. 제안된 알고리즘의 적용 결과 중첩 또는 예측하기 어려운 움직임 등과 같은 객체의 비선형적인 움직임이 있는 동영상에 대해 기존 파티클 스웜 방식에 비해 현저한 성능 개선을 보이는 것을 확인할 수 있었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.