• Title/Summary/Keyword: 이동통신형 위성단말

Search Result 18, Processing Time 0.03 seconds

Requirement Analysis of Satellite On-the-Move Transportable Terminal System (이동통신형 차량위성단말 시스템 요구사항 분석)

  • Oh, Il-Hyuk;Song, Choong-Ho;Ko, Dong-Kuk
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Line-of-sight communications cannot easily support korean armed forces because of mountainous terrain. ADD(Agency for Defense Development) introduced ANASIS(Army Navy Air-force Satellite Information System) to meet the Korean warfighter's operational needs. Currently, army's military satcom terminal is designed for either fixed site or on-the-pause operation. The US army is under development of multi-band integrated on-the-move satellite terminals to let the army's communication capability to keep pace with globally deployable Joint Task Force for network-centric application. In this paper we analyzed X-band and Ka-band link and subsystem requirement. Our focus here is to describe key technical issues. Especially, On the basis of 3dB beam width of 0.9m antenna, Tracking accuracy and disturbances compensation signal processing on-the-move of Antenna Tracking system is analyzed. Also, protocol is analyzed that minimize blockage on the move due to an obstacle. when the received signal blocked, it stop to transmit burst signal and retransmit when blockage removed through received synchronization signal monitoring. Analyzed specification will be used to make prototype terminal to analyze risk for mass production

  • PDF

Analysis of Error Probability of Mobile Satellite Communication System In Korea Peninsula Area (한반도 지역에서 이동형 위성단말의 오류확률 분석)

  • Lee, Huikyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.67-71
    • /
    • 2019
  • In this paper, we derive a reference error probability performance in the environment where mobile satellite terminal is operated. When the satellite terminal moves, shadowing occurs due to the surrounding obstacles and the BER is lowered. We use the Lutz model simulating the environment in which mobile satellite terminals operate The Lutz model combines the Rician distribution with the Suzuki model. The error probability is derived from the numerical analysis of two distribution functions. The simulated results using the measured results in the Korean Peninsula forest area were similar to the BER results obtained using the Lutz model. Intuitively, the approximated results are similar to the measured results. Numerically, the BER error is about 3e-4 or less at an SNR of 30dB.

Performance Analysis of Mobile Satellite Terminal Channel using ARQ Technique (ARQ 기법을 활용한 이동형 위성단말 채널의 성능분석)

  • Lee, Huikyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.73-77
    • /
    • 2019
  • In this paper, the performance is confirmed by applying ARQ technology to the shadowing channel occurring in the mobile satellite terminal. Shadowing is a signal disruption caused by movement of a satellite terminal. An ARQ technique may be used to retransmit the signal to compensate for signal interruption.In satellite communication, shadowing occurs in the transmission channel and the ack channel. The expected throughput after applying ARQ technique is different according to the correlation of shadowing occurring in two channels. Therefore, we confirm the expected performance when ARQ is applied in the shadowing channel. As a result, it is shown that the amount of transmission is different when the terminal transmits and receives, and the performance can be predicted formally.

An Open-Loop Power Control Algorithm for On-The-Move Terminal in Satellite Communication Systems (위성통신 시스템에서 이동형 위성단말을 위한 개루프 전력제어 알고리즘)

  • Lee, Ho-Sub;Park, Hyung-Won;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2298-2306
    • /
    • 2014
  • In this paper, we propose an open loop power control algorithm to control transmission power of the On-The-Move(OTM) Satcom terminal in GEO satellite communication environment. The proposed algorithm identifies the current channel state restricted by an obstacle or an antenna depointing loss based on the received beacon signal strength. On the basis of the determined signal attenuation causes, the OTM Satcom terminal turns off the RF output when an antenna tracking is failed. If the OTM Satcom terminal experiences a channel blockage by an obstacle, the terminal spreads the transmit data to increase data reception probability. To evaluate the performance of the proposed algorithm, we compare an adjacent satellite interference level and an outage probability. The results show the performance of the proposed algorithm is better than that of the conventional algorithm.

Blocking Effect Compensation using Diversity Technique (Diversity기법을 활용한 Blocking영향 보상)

  • Lee, Huikyu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2017
  • Reception performance in land mobile satellite is decreased by obstacle. It is compensated with Diversity technique. In this paper, performances are analyzed with two type of method Equal Gain Combining(EGC) and Selcetive Combining(SC). To analyze, measured data using On-The-Move(OTM) terminal are used. In conclusion, SC method can increase performance. However, EGC method can improve perforamance only in rural region, but performance are decreased in urban region.

Performance Analysis of Cooperative Communication with Spread Spectrum to Overcome Channel Blockage for On-The-Move Terminal in Next Generation Satellite Communication Systems (차기 군 위성통신체계 환경에서 이동형 위성단말의 채널 blockage 극복을 위한 확산기반 협업통신 기법의 성능 분석)

  • Park, Hyung-Won;Lee, Ho-Sub;Yoon, Won-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.757-766
    • /
    • 2014
  • To compensate signal loss due to the channel blockage in satellite communication link, we propose a cooperative communication scheme for OTM(On-The-Move) terminal in next generation satellite communication systems. The proposed scheme configures cooperation subnet with adjacent OTM terminal with the help of ground communication equipment. Shared data is spread by orthogonal spreading code, then the spread sequences are transmitted simultaneously. The receiver combines the power of received signals by EGC(Equal gain combining). The OTM terminal blockage channel is modeled by 2-state Markov chain. We evaluate the bit error rate according to the blockage channel of the channel state for the performance analysis of the proposed scheme. As a result, the proposed scheme shows better BER performance than traditional scheme with the help of subset members. In particular, the proposed scheme shows superior performance as the channel block probability is higher. However, as the number of subset members is increasing, there is a constraint because of the higher multiple access interference.

System Phase Noise for Mobile Satellite Communication Service (이동형 위성통신 서비스를 위한 시스템 위상 잡음)

  • Kim Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1780-1786
    • /
    • 2005
  • The phase error generated in the transmission system affects the performance of digital transmission signal. The phase error are generated by random phase noise and tracking phase error due to denier phenomenon. In the mobile satellite communication system that generates the doppler frequency, which is a system with a movement, the proper system phase noise spectrum should be designed based on analyses for phase noise and static phase error effects. Based on the analyses of the doppler frequency and the phase error for bilateral satellite communication system providing an asynchronous service, the phase noise spectrums for the mobile satellite communication are designed in this paper. Also, the available transmission services under the less doppler effect are proposed and the proper signal source units for a required transmission system can be designed under the proposed system phase noise spectrum.

Development of Low-cost RTK Device base on LTE-M for Precise Location Positioning (정밀 위치 측위를 위한 LTE-M 기반의 저가형 RTK 단말 개발)

  • Park, Chul-sun;Park, Sung-kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.565-567
    • /
    • 2018
  • The rover acquires its own position information using satellites signals provided by several satellites(at least four or more). For the present, GNSS systems are widely used in various fields. However, there are many factors that cause accuracy errors in positioning between rovers and GNSS satellites. Due to satellite time error, orbit error, ionospheric & convective refraction, multipath, etc., rover can't acquire precise position. Differential GPS(DGPS) and Real-Time Kinematic(RTK) have been developed as compensation techniques to reduce such errors. In this paper, we intend to develop a terminal with RTK technique to acquire precise position information of mobile station.

  • PDF

Design of Maritime Satellite Communication Systems Sharing Frequency with DVB-S2 (DVB-S2와 주파수 공유하는 해양 위성 통신 시스템 설계)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Yu, Heejung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • In this paper, the Ka-band maritime satellite communication systems for mobile terminals are proposed. The design includes the link budget analysis, determination of modulation and coding schemes and the overall structure of a transmitter. To avoid the harmful effects on the existing DVB-S2 services, the proposed maritime satellite system using the same spectrum with DVB-S2 at the same time employs the very wideband spreading transmission. Additionally, omni-directional low-gain antennas should be equipped in a mobile terminal to reduce the system cost. These two considerations limit the maximum transmission rate of the proposed system. Due to the limitations, the proposed system includes 36 dB or 39 dB spreading gain depending on the modulation scheme and a link-adaptive repetition method depending on the level of rain attenuation. To support short packets with minimal performance loss, the turbo code used in 3GPP instead of LDPC(low density parity check code) is adopted. By combining them, the overall structure of low-rate maritime satellite communication system is designed.

System Phase Noise for Mobile Satellite Communication Service (이동형 위성통신 서비스를 위한 시스템 위상 잡음)

  • Kim, Young-Wan;Jang, Myeong-Shin;Baek, Wha-Jong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.735-738
    • /
    • 2005
  • The phase error in the digital transmission system are generated by random phase noise and tracking phase error due to doppler phenomenon. In the mobile satellite communication system that generates the doppler frequency, which is a system with a movement, the proper system phase noise spectrum should be designed based on analyses for phase noise and static phase error effects. Based on the analyses of the doppler frequency and the phase error for bilateral satellite communication system providing an asynchronous service, the phase noise spectrums for the mobile satellite communication are designed in this paper. Also, the available transmission services under the less doppler effect are proposed and the proper signal source units for a required transmission system can be designed under the proposed system phase noise spectrum.

  • PDF