실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.
본 논문에서는 딥러닝 네트워크인 순환신경망(RNN) 모델을 사용해 이동 중인 객체의 이동 경로의 예측을 위한 포지셔닝 기술로서 실내 환경에서 지역 경로 내의 이동 중인 차량의 경로 예측에 연속적인 위치 정보를 이용하여 현재 위치 결정의 오류를 낮출 수 있는 이동 경로 생성 기법을 제안한다. GPS 정보를 사용할 수 없는 실내 환경의 경우 RNN 모델을 적용하기 위해서는 데이터 세트가 연속적이고 순차적이어야 한다. 그러나 Wi-Fi 전파 지문 데이터는 수집 시점의 특정 위치에 대한 특징 정보로서 연속성이 보장되지 않기 때문에 RNN 데이터로 사용할 수 없다. 따라서 RNN 모델에 필요한 순차적 위치의 연속성을 부여하여 실내 환경의 지역 경로를 이동하는 차량의 이동 경로 생성 기법을 제안한다.
GeoSensor 네트워크란 지리공간상에서 발생하는 다양한 현상들을 모니터링하는 특정형태의 센서네트워크 인프라 및 관련 소프트웨어를 의미한다. 그리고 이러한 GeoSensor 네트워크는 데이터스트림과 공간 속성의 데이터를 가진 스트림, 또는 공간 릴레이션과의 조합으로 구현될 수 있다. 하지만, 최근까지 연구된 센서 네트워크 시스템은 공간 정보를 배제한 센서 데이터스트림에 대한 저장 및 검색 방안 연구에 치중되어 있다. 따라서 본 논문은 GeoSensor 네트워크에서 데이터스트림과 공간 데이터가 결합된 형태의 공간 데이터스트림의 정의 및 그들 간의 조인 전략들을 제안한다. 본 논문에서 정의하고 있는 공간 데이터스 트림에는 이동 객체 형태의 동적 공간 데이터스트림과 고정된 형태의 정적 공간 데이터스트림이 있다. 동적공간 데이터스트림은 GPS와 같이 동적으로 이동하는 센서에 의해 전송되는 데이터스트림을 말한다. 반면, 정적 공간 데이터스트림은 일반 센서 형태의 데이터스트림과 이러한 센서들의 위치 값을 가지고 있는 릴레이션과의 조인으로 만들어 진다. 본 논문은 동적 공간 데이터스트림과 정적 공간 데이터스트림의 조인 및 조인 비용을 추정하는 모델을 제안하고 있다. 또한, 실험을 통해 제안하는 비용 모델의 검증 및 조인 전략에 따른 조인 성능을 보이고 있다.
최근 정보의 형태는 텍스트나 이미지 기반에서 벗어나 복합 멀티미디어, 즉 동영상 위주로 빠르게 이동하고 있다. 특히 사용자에 의해 제작되고 유통되는 동영상 UCC의 급격한 부상은 사용자의 정보 생산력과 정보 공유, 소비 형태를 능동적으로 변화시키고 있다. PC 뿐 아니라 IPTV에서도 주요 서비스 모델로 관심을 받는 동영상 UCC는 향후 지식 결부형 학습 콘텐츠로 옮아갈 것이라 예상되고 있으며 여기에는 수익 모델의 개발과 저작권 보호 이슈가 해결해야 할 선결 과제로 인식된다. 이에 본 논문은 방송 콘텐츠 제공 표준 기술인 TV-Anytime, 학습객체메타데이터인 LOM(Learning Object Metadata)을 기반으로 OSMU 동영상 UCC 학습 콘텐츠 서비스 모델을 위한 에디터를 설계하고 외부 콘텐츠 소스를 활용할 수 있는 콘텐츠 저작 시나리오에 기반한 메타데이터를 설계하였다. 이를 통해 사용자의 다양한 지식을 활용할 수 있는 UCC 학습 콘텐츠 서비스 모델 발굴과 콘텐츠의 확대 재생산에 있어서 적극적인 저작권 보호가 이루어질 것을 기대한다.
딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.
이 논문에서는 차량 또는 도로 인프라 센서에 의해 검출된 도로상의 각 객체들 간의 상황인지를 효과적으로 하기 위해서 그래프 데이터 모델을 도입한다. 제안하는 방법은 도로상의 각 객체들을 그래프의 정점(Vertex)로, 객체들 간의 관계를 그래프의 간선(Edge)로 모델링하여 그래프 데이터베이스를 구축하고, 객체의 속성과 간선의 속성을 실시간으로 업데이트한다. 이때 간선으로 표현되는 객체들 간의 관계는 각 객체의 위치, 이동방향, 이동속도 등을 고려하여 객체들 간에 근접 가능성이 있을 경우 설정한다. 또한, 제안하는 그래프 모델링 방법을 통해 표현한 도로 객체 그래프 데이터베이스를 실시간으로 업데이트하기 위해 그래프 정점과 간선에 대한 공간 색인 기법을 제안한다. 제안하는 색인기법 기반의 그래프 데이터베이스 업데이트 성능을 평가하기 위해서 색인 없이 업데이트하는 방법과 비교하였으며 비교결과 제안하는 방법이 10배 더 빠르게 업데이트를 할 수 있음을 확인하였다.
최근 공간정보 기술은 정확도와 효율성 측면에서 큰 발전을 이루어 왔다. 특히, 항공 레이저 스캐너로부터 획득한 점군집 데이터를 이용하여 3차원 공간정보를 획득할 수 있게 되었다. 다양한 3차원 공간 데이터 구축에 대한 연구는 국내외의 관심 분야이며, 객체 모델링은 가장 중요한 과정이다. 본 연구의 목적은 건물 모델링의 자동화 알고리즘 개발과 이를 검증할 수 있는 시뮬레이션 데이터의 생성이다. 시뮬레이션 데이터는 건물의 다양성을 고려하여 경사형, 피라미드형, 돔형, 복합 다각형과 같은 여러 복잡한 형태의 지붕으로 구성된 객체이다. 이 논문에서는 면교차점(Model key point) 결정을 통한 자동 건물 모델링을 위하여 지붕면 패치를 기하학적 특징을 기반으로 분할하였다. 실험 결과로부터 분할된 면들은 최적의 수학적 함수에 의해 모델링 되며, 객체를 구성하는 면교차점들을 추출할 수 있었고, 인공지물에 대한 수치도화 제작을 위한3차원 도화가 가능하였다.
이동성을 지원하는 모바일 환경에서 위치정보의 활용에 대한 사용자 요구가 증가되고 있으며, 시간 흐름에 따라 변화가 크게 증가되는 차량 위치와 관련된 교통 정보를 효과적으로 유지 관리하기 위한 이동체 데이터베이스 시스템의 활용이 지속적으로 제기되고 있다. 이에 반해 객체의 공간적 속성이 시간에 따라 연속적으로 변하는 이동체에 대해 위치기반서비스를 위한 지도 데이터베이스와 연계된 연구가 미비한 실정이다. 이에 본 연구에서는 시간의 변화에 따른 이동체의 위치와 질의 처리가 가능한 효율적인 시공간 이동체 색인 구조와 이를 지원하는 새로운 실증적 모델의 정립을 목적으로 한다. 본 연구에서 제시한 단계별 고정 그리드 인덱스를 이용한 시공간 이동체 모델은 대용량의 위치 기반 데이터의 효율적인 필터링을 통해 검색을 위한 공간 개체 수를 줄일 수 있었다. 또한 축척별 지도 표시를 위해 레벨을 조건으로 제약시켜 계층적 데이터 접근이 허용도록 효율적으로 구성되었음을 확인할 수 있었다.
디지털 문서의 유통과정에서 발생할 수 있는 보안상의 문제를 해결하기 위해서는 파일 복사, 이동과정에 문서의 보안 등급을 자동 검출하고 특정 문서의 유출을 방지하는 보안 솔루션이 필요하다. 따라서 본 논문에서는 이러한 보안상의 문제를 해결하기 위하여 하나의 검출 분류 시스템을 제안하고자 한다. 제안한 시스템은 디지털 문서 내용을 이용하여 핵심 정보라고 판단되는 객체를 우선 추출한 후 그 핵심 유형을 분류하는 과정을 통해서 핵심 정보를 사전에 탐지하도록 하였다. 이를 위해서 SOTA를 달성한 YOLOv8를 이용하여 디지털 문서의 핵심 객체 감지하고 또한 파인튜닝을실시한 모델을 이용하여 그 유형을 분류하도록 설계하였다. 해당 시스템 검증을 위해서 기업에서 사용하고 있는 실제 사내 문서를 데이터셋을 이용하고 그 성능평가를 실시하였다.
비디오 해석 및 추적기술은 특정한 시스템에서만 적용되는 것이 아니다. 이것은 비디오 내에서 의미 있는 정보를 능동적으로 감시 대상을 정의, 해석, 모델화, 추정 및 추적 할 수 있는 기반 기술을 의미하다. 일반적으로 감시시스템에서 감시 대상은 사람이나 차량이며, 상황에 따라 출입통제 구역으로 설정하기도 한다. 이는 연속된 영상에서 객체의 형태, 모양, 행동 분석, 움직임, 색상정보를 가지고 데이터 정의, 검출, 모델화를 통하여 인식, 식별 그리고 추적한다. 본 논문에서는 비디오 영상분석을 통해 단일카메라기반의 감시시스템과 PTZ 카메라기반 감시시스템 제안한다. 이때 단일 카메라기반의 감시는 배경생성방법을 이용하여 연속된 영상내의 객체를 지속적으로 관리가 가능하도록 설계하였고, PTZ 카메라기반의 감시는 카메라의 이동에 따른 배경안정화 방법과 카메라의 절대좌표를 활용하여 카메라 이동을 제어함과 동시에 오검출 문제를 해결하였다. 실험 및 결과분석으로는 시나리오 환경에서 배경생성방법을 이용한 검출의 정확성과 PTZ카메라 위치 변화에도 강인한 검출 결과를 비교 분석하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.