• 제목/요약/키워드: 의사결정트리 학습

검색결과 71건 처리시간 0.029초

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.213-219
    • /
    • 2020
  • 본 연구는 스마트폰 과의존을 진단하고 예측하기 위하여 할 수 있는 분류분석 방법과 스마트폰 과의존 분류율에 영향을 미치는 중요변수를 규명하고자 시도되었다. 이를 위해 인공지능의 방법인 기계학습 분석 기법 중 의사결정트리, 랜덤포레스트, 서포트벡터머신의 분류율을 비교하였다. 자료는 한국정보화진흥원에서 제공한 '2018년 스마트폰 과의존 실태조사'에 응답한 25,465명의 데이터였고, R 통계패키지(ver. 3.6.2)를 사용하여 분석하였다. 분석한 결과, 3가지 분류분석 기법은 정분류율이 유사하게 나타났으며, 모델에 대한 과적합 문제가 발생되지 않았다. 3가지 분류분석 방법 중 서포트벡터머신의 분류율이 가장 높게 나타났고, 다음으로 의사결정트리 기법, 랜덤포레스트 기법 순이었다. 스마트폰 이용 유형 중 분류율에 영향을 미치는 상위 3개 변수는 생활서비스형, 정보검색형, 여가추구형이었다.

Classification Model of Food Groups in Food Exchange Table Using Decision Tree-based Machine Learning

  • Kim, Ji Yun;Kim, Jongwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.51-58
    • /
    • 2022
  • 본 논문에서 우리는 기존 식품과 웹 크롤링으로 찾은 식품 데이터에 대해 기계학습으로 식품군을 분류하여 식품교환표를 갱신하기 위한 의사결정트리 기반의 기계학습 모델을 제안한다. 식품교환표는 영양 관리가 필요한 환자의 식이요법이나 다이어트 식단을 편성할 때 식품 교환 섭취에 사용된다. 식단의 기준이 되는 식품교환표는 국민건강영양조사를 통한 개정과정에서 많은 인력과 시간이 소요되어 새로운 식품이나 트렌드에 따른 식품 변화를 신속하게 반영하기 어렵다. 제안 기법은 기존의 식품군을 바탕으로 새롭게 추가되는 식품을 분류하기 때문에 식품의 트렌드를 반영한 식품교환표 구성이 가능하다. 연구에서 제안 모델로 식품을 분류한 결과, 식품교환표의 식품군에 대한 정확도가 97.45%로 나타났으며, 본 식품 분류 모델은 병원, 요양원 등에서 식단 구성에 활용도가 높을 것으로 전망된다.

머신러닝 편향성 관점에서 비식별화의 영향분석에 대한 연구 (A Study on Impacts of De-identification on Machine Learning's Biased Knowledge)

  • 하수현;김진송;손예은;원가은;최유진;박소연;김형종;강은성
    • 한국시뮬레이션학회논문지
    • /
    • 제33권2호
    • /
    • pp.27-35
    • /
    • 2024
  • 본고에서는 인공지능 모델 학습에 사용하는 데이터셋에 내재한 편향성이 인공지능 예측 결과에 미치는 영향을 분석함으로써, 위의 경우가 사회적 격차를 고착화시키는 문제를 조명하고자 하였다. 따라서 데이터 편향성이 인공지능 모델에 끼치는 영향을 분석하기 위해, 성별 임금 격차에 관한 편향이 포함된 원본 데이터셋을 제작하였으며 해당 데이터셋을 비식별 처리한 데이터셋을 만들었다. 또한 의사결정트리 알고리즘을 통해 원본 데이터셋과 비식별화 된 데이터셋을 학습한 각각의 인공지능 모델 간의 산출물을 비교함으로써, 데이터 비식별화가 인공지능 모델이 산출한 결과의 편향에 어떠한 영향을 미치는지 분석하였다. 이를 통해 데이터 비식별화가 개인정보 보호뿐만 아니라, 데이터의 편향에도 중요한 역할을 할 수 있음을 도출하고자 하였다.

연결강도분석접근법에 의한 부도예측용 인공신경망 모형의 입력노드 선정에 관한 연구 (Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Link Weight Analysis Approach)

  • 이응규;손동우
    • 지능정보연구
    • /
    • 제7권2호
    • /
    • pp.19-33
    • /
    • 2001
  • 본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드를 연결하는 연결가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 선정기준에 따라 약체연결뉴론제거법과 강체연결뉴론선택법을 들 수 있다. 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다변량판별분석 기법보다 높은 예측율을 보여주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.

  • PDF

모순 문제 해결을 위한 의사결정트리 기반 나비 알고리즘의 개발과 적용 (Development and Application of the Butterfly Algorithm Based on Decision Making Tree for Contradiction Problem Solving)

  • 현정석;고예준;김융결;전승재;박찬정
    • 컴퓨터교육학회논문지
    • /
    • 제22권1호
    • /
    • pp.87-98
    • /
    • 2019
  • 모순에 대한 일반적인 생각은 모순을 해결 가능성이 전혀 없는 공집합이나 논리적으로 틀린 것이다. 두 가지 대안 중에서 어느 쪽도 바람직하지 못한 결과를 초래하는 딜레마는 그 안에 숨어 있는 모순을 해결해야 하므로 해결이 어렵다. 하지만 이런 특성으로 인해 역설적으로 모순 해결은 혁신적이고 창의적인 문제 해결로 간주 되어왔다. 문제의 해법을 모순 해결의 관점에서 분석하는 트리즈(TRIZ)는 그동안 컴퓨터보다는 인간의 관점에서 문제 해결 방법으로 사용되었다. 트리즈처럼 모순 해결 중심으로 문제를 분석하는 나비 모형은 문제 해결의 자동화 관점에서 기호 논리학을 이용하여 모순 문제의 유형을 분석하였다. 모순문제유형별 구체적 해결전략을 적용하기 위해 본 연구에서는 의사결정트리 기반의 나비 알고리즘을 설계하였다. 본 연구는 파이선 tkInter를 바탕으로 주어진 모순 문제의 구체적 해결전략을 찾아 사용자들에게 제시하는 시각화 도구를 개발하였다. 개발한 도구를 검증하기 위하여 중학교 3학년 학생들이 나비 알고리즘을 학습한 후, 나무지지대의 모순 문제를 분석하도록 하였다. 학생들이 새로운 해결책을 찾아 발명대회에 참가하여 대상을 받았다. 본 연구에서 개발한 의사결정트리 기반 나비 알고리즘은 문제 해결 초기에 문제의 해결공간을 체계적으로 줄여주어 시행착오 없이 모순 문제를 해결하는데 도움을 줄 수 있다.

하이브리드 의사결정나무와 인공신경망 모델을 이용한 방문학습지사의 고객세분화 (Customer Segmentation of a Home Study Company using a Hybrid Decision Tree and Artificial Neural Network Model)

  • 서광규;안범준
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.518-523
    • /
    • 2006
  • 본 논문은 하이브리드 의사결정 나무(CART)와 인공신경망 모델을 개발하여 고객의 이탈에 대한 예측을 높이기 위하여 가정방문 학습지 고객의 패턴을 분류하고, 분석하는 새로운 방법에 대하여 연구하였다. 의사 결정나무(CART5)를 형성하여 선택된 결정변수들은 인공신경망의 입력벡터 값으로 선택되는 새로운 방법을 제시하였다. 고객 관리측면에서 본 논문은 가정방문 학습지 회사의 기존고객을 분류하여 패턴을 분석함으로써 우수한 고객의 지속적인 관리와 이탈 가능성이 많은 고객을 차별 관리하여 기업이익을 증대시킬 수 있을 것이다. 새롭게 제안한 하이브리드 모델은 기존의 의사결정트리모델(CART), 회귀모형, 인공신경망 모델과 비교한 결과 그 예측 정확성이 높음을 확인할 수 있었다.

  • PDF

의사결정트리 학습을 적용한 조선소 블록 적치 위치 선정에 관한 연구 (A Study on Selection of Block Stockyard Applying Decision Tree Learning Algorithm)

  • 남병욱;이경호;이재준;문승환
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.421-429
    • /
    • 2017
  • It is very important to manage the position of the blocks in the shipyard where the work is completed, or the blocks need to be moved for the next process operation. The moving distance of the block increases according to the position of the block stockyard. As the travel distance increases, the number of trips and travel distance of the transporter increases, which causes a great deal of operation cost. Currently, the selection of the block position in the shipyard is based on the know-how of picking up a transporter worker by the production schedule of the block, and the location where the block is to be placed is determined according to the situation in the stockyard. The know-how to select the position of the block is the result of optimizing the position of the block in the shipyard for a long time. In this study, we used the accumulated data as a result of the operation of the yard in the shipyard and tried to select the location of blocks by learning it. Decision tree learning algorithm was used for learning, and a prototype was developed using it. Finally, we prove the possibility of selecting a block stockyard through this algorithm.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

부스팅 인공신경망학습의 기업부실예측 성과비교 (An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction)

  • 김명종;강대기
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.63-69
    • /
    • 2010
  • 최근 기계학습 분야에서 분류자의 정확도 개선을 위하여 제안된 다양한 방법들 중 가장 큰 주목을 받고 있는 학습방법 중 하나는 앙상블 학습이다. 그러나 앙상블 학습은 의사결정트리와 같이 불안정한 학습 알고리즘의 성과 개선 효과는 탁월한 반면, 인공신경망과 같이 안정적인 학습알고리즘의 성과 개선 효과는 응용 분야와 구현 방법에 따라 서로 상반된 결론들을 보여주고 있다. 본 연구에서는 국내 기업의 부실화 예측문제를 활용하여 인공신경 망 분류자 및 대표적 앙상블 학습기법인 부스팅 분류자를 적용한 결과 앙상블 학습은 기업부실 예측문제에 있어 전통적 인공신경망의 성과를 개선할 수 있음을 검증하였다.

다변량 목표변수를 갖는 의사결정나무의 노드분리에 관한 연구 (A Study on the Node Split in Decision Tree with Multivariate Target Variables)

  • 김성준
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.386-390
    • /
    • 2003
  • 데이터마이닝은 많은 양의 데이터로부터 의사결정에 유용한 패턴을 발견하는 과정으로서 최근 경영 및 공학 분야의 폭넓은 영역에서 많은 관심을 모으고 있다. 어떤 그룹을 여러 하위그룹으로 분류해내는 일은 데이터마이닝의 주요 내용 중 하나이다. 의사결정나무로 알려진 트리기반 기법은 그러한 분류모형을 수립하는 데 효율적인 방안을 제공한다 트리학습에 있어서 우선적인 관건은 목표변수에 의해 측정되는 노드불순도를 최소화하는 것이다. 하지만 공정관측, 마케팅과학, 임상분석 등과 같은 문제에서는 여러 목표변수를 동시에 고려해야 하는 상황이 쉽게 등장하는 데, 본 논문의 목적은 이처럼 다변량 목표변수를 갖는 데이터셋에서 활용할 수 있는 노드불순도 측정방안을 제시하는 데 있다. 아울러 수치 예를 이용하여 적용결과에 대해 논의한다.