• Title/Summary/Keyword: 의사결정트리 학습

Search Result 71, Processing Time 0.037 seconds

Development and Effect Analysis of a Learning Support System for Underachievers Using Psychological Learning Style Tests (학습 스타일 심리검사를 이용한 부진아 학습 지원 시스템의 개발 및 효과 분석)

  • Lee, Jong-Suk;Jang, Eun-Sill;Lee, Yong-Kyu
    • Journal of The Korean Association of Information Education
    • /
    • v.11 no.3
    • /
    • pp.299-306
    • /
    • 2007
  • It is urgent to have learning support for children with learning disability according to the survey made by the government educational organization. To this end, we developed a learning support system for children with learning disability. First, the system diagnoses the children with learning disability using a decision tree based on the pre-test results. Secondly, it supports for children with learning disability one of audio-, vision- and tactility-oriented learning types according to the results from the psychological learning style test. Thirdly, one-to-one study is supported for failed students at the achievement test. For the evaluation of the system, the children with disability were divided into an experimental group and a control group and the educational achievement was evaluated. We found that 10% on the average was improved in case that learning was made after the psychological test for learning styles.

  • PDF

Oriental Medicine-based Health Pre-Diagnosis System using Fuzzy Decision Tree (퍼지 의사 결정 트리를 이용한 한의학 기반의 건강 사전 진단 시스템)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1519-1524
    • /
    • 2021
  • In this paper, we propose a method that uses fuzzy decision tree based health pre-diagnosis system of oriental medicine. The proposed fuzzy decision tree based health pre-diagnosis system uses the data from the past which has been pre-trained to get the boundary values based on entropy then, when the user inputs the symptoms, the top 5 diseases that causes those symptoms are extracted. With the extracted top 5 diseases, the system provides information on those diseases with the cause and how to treat them with folk remedies. The database of the diseases and their symptoms is established with the information based on the various books that the oriental doctor recommended then reviewed by the oriental doctor for confirmation. By utilizing the data from the past to train the symptoms of the diseases, the proposed oriental medicine-based health pre-diagnosis system method could provide more accurate diagnosis results faster.

Recommender System using Context Information and Spatial Data Mining (상황정보와 공간 데이터 마이닝 기법을 이용한 추천 시스템)

  • Lee Bae-Hee;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.667-669
    • /
    • 2005
  • 유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.

  • PDF

Development of a model to analyze the relationship between smart pig-farm environmental data and daily weight increase based on decision tree (의사결정트리를 이용한 돈사 환경데이터와 일당증체 간의 연관성 분석 모델 개발)

  • Han, KangHwi;Lee, Woongsup;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2348-2354
    • /
    • 2016
  • In recent days, IoT (Internet of Things) technology has been widely used in the field of agriculture, which enables the collection of environmental data and biometric data into the database. The availability of big data on agriculture results in the increase of the machine learning based analysis. Through the analysis, it is possible to forecast agricultural production and the diseases of livestock, thus helping the efficient decision making in the management of smart farm. Herein, we use the environmental and biometric data of Smart Pig farm to derive the accurate relationship model between the environmental information and the daily weight increase of swine and verify the accuracy of the derived model. To this end, we applied the M5P tree algorithm of machine learning which reveals that the wind speed is the major factor which affects the daily weight increase of swine.

A method of searching the optimum performance of a classifier by testing only the significant events (중요한 이벤트만을 검색함으로써 분류기의 최적 성능을 찾는 방법)

  • Kim, Dong-Hui;Lee, Won Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1275-1282
    • /
    • 2014
  • Too much information exists in ubiquitous environment, and therefore it is not easy to obtain the appropriately classified information from the available data set. Decision tree algorithm is useful in the field of data mining or machine learning system, as it is fast and deduces good result on the problem of classification. Sometimes, however, a decision tree may have leaf nodes which consist of only a few or noise data. The decisions made by those weak leaves will not be effective and therefore should be excluded in the decision process. This paper proposes a method using a classifier, UChoo, for solving a classification problem, and suggests an effective method of decision process involving only the important leaves and thereby excluding the noisy leaves. The experiment shows that this method is effective and reduces the erroneous decisions and can be applied when only important decisions should be made.

Food Exchange Table Organization Model Based on Decision Tree Using Machine Learning (머신러닝을 이용한 의사결정트리 기반의 식품교환표 구성 모델)

  • Kim, JiYun;Lee, Sangmin;Jeon, Hyeongjun;Kim, Gaeun;Kim, Ji-Hyun;Park, Naeun;Jin, ChangGyun;Kwon, Jin young;Kim Jongwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.680-684
    • /
    • 2020
  • 최근 국내에서는 식품에 대한 관심도가 높아짐에 따라 먹거리에 건강·환경·미래지향적 가치가 부여되고 있으며 식품 산업에서도 신규 식품 개발이 증가하는 추세이다. 식단을 구성할 때 기준이 되는 식품교환표는 개정과정에서 많은 인력과 시간이 소요되기 때문에 식품 섭취 변화를 신속하게 반영하기 어렵다. 본 논문에서는 식품교환표의 활용도를 높이기 위한 식품교환표 갱신 기법을 제안한다. 제안 기법은 의사결정트리 모델을 학습하여 새롭게 추가된 식품의 정보를 바탕으로 식품군을 분류하여 식품교환표를 갱신한다. 이는 영양 관리가 필요한 당뇨병 환자 등에게 실용적이며 기호성·다양성이 높은 식단을 구성하는 데 도움을 준다.

Indoor positioning system using Xgboosting (Xgboosting 기법을 이용한 실내 위치 측위 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Kim, Dae-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.492-494
    • /
    • 2021
  • The decision tree technique is used as a classification technique in machine learning. However, the decision tree has a problem of consuming a lot of speed or resources due to the problem of overfitting. To solve this problem, there are bagging and boosting techniques. Bagging creates multiple samplings and models them using them, and boosting models the sampled data and adjusts weights to reduce overfitting. In addition, recently, techniques Xgboost have been introduced to improve performance. Therefore, in this paper, we collect wifi signal data for indoor positioning, apply it to the existing method and Xgboost, and perform performance evaluation through it.

  • PDF

Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Integrated Link Weight Analysis (통합 연결강도모형에 의한 부도예측용 인공신경망 모형 입력노드 선정에 관한 연구)

  • 이웅규
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.359-368
    • /
    • 2001
  • 본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석 접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드와 연결된 가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정 트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다다변량판별분석 기법 보다 높은 예측율을 보여 주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.

  • PDF

Pattern Analysis of Traffic Accident data and Prediction of Victim Injury Severity Using Hybrid Model (교통사고 데이터의 패턴 분석과 Hybrid Model을 이용한 피해자 상해 심각도 예측)

  • Ju, Yeong Ji;Hong, Taek Eun;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • Although Korea's economic and domestic automobile market through the change of road environment are growth, the traffic accident rate has also increased, and the casualties is at a serious level. For this reason, the government is establishing and promoting policies to open traffic accident data and solve problems. In this paper, describe the method of predicting traffic accidents by eliminating the class imbalance using the traffic accident data and constructing the Hybrid Model. Using the original traffic accident data and the sampled data as learning data which use FP-Growth algorithm it learn patterns associated with traffic accident injury severity. Accordingly, In this paper purpose a method for predicting the severity of a victim of a traffic accident by analyzing the association patterns of two learning data, we can extract the same related patterns, when a decision tree and multinomial logistic regression analysis are performed, a hybrid model is constructed by assigning weights to related attributes.

Design of the student Career prediction program using the decision tree algorithm (의사결정트리 알고리즘을 이용한 학생진로 예측 프로그램의 설계)

  • Kim, Geun-Ho;Jeong, Chong-In;Kim, Chang-Seok;Kang, Shin-Chun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.332-335
    • /
    • 2018
  • In recent years, artificial intelligence using big data has become a big issue in IT. Various studies are being conducted on services or technologies to effectively handle big data. The educational field, there is big data about students, but it is only a simple process to collect, lookup and store such data. In the future, it makes extensive use of artificial intelligence, machine learning, and statistical analysis to find meaningful rules, patterns, and relationships in the big data of the educational field, and to produce intelligent and useful data for the actual students. Accordingly, this study aims to design a program to predict the career of students using a decision tree algorithm based on the data from the student's classroom observations. Through a career prediction program, it is believed to be helpful to present application paths to students ' counseling and to also provide classroom behavior and direction based on the desired courses.

  • PDF