• Title/Summary/Keyword: 의사결정나무 분석

Search Result 409, Processing Time 0.024 seconds

휴대용 카메라 모듈(CCM) 제조 라인에 대한 데이터마이닝 기반 품질관리시스템 구축 (Building the Quality Management System for Compact Camera Module(CCM) Assembly Line)

  • 유성진;강부식;홍한국
    • 지능정보연구
    • /
    • 제14권4호
    • /
    • pp.89-101
    • /
    • 2008
  • 제조 분야에서 품질관리를 위해 가장 많이 사용되는 도구는 관리도이다. 하지만 휴대용 카메라 모듈과 같은 소형 전자부품의 제조 라인은 자동화되어 여러 개의 공정이 유기적으로 연결되어 있는 경우 관리도의 적용이 쉽지 않다. 이러한 문제점을 해결하기 위해 공정의 흐름을 파악할 수 있는 모니터링체계와 수율 예측 및 주요공정 변수 파악 등의 주요 공정 파라메터 추출 체계로 구성된 데이터마이닝 기반 품질관리시스템을 구축하고자 한다. 데이터마이닝을 위해 품질관리시스템은 의사결정나무, 신경망, 패턴분석 등의 모듈을 사용한다. 제안된 시스템을 통해 제조 공정은 안정적인 품질의 유지 및 공정 이상 유무의 신속한 파악, 수율 예측 등 품질관리를 위한 유용한 정보를 제공하고 공정의 신뢰성을 높이는데 기여할 수 있을 것이다.

  • PDF

기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구 (A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm)

  • 이호현;정승현;최은정
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.245-258
    • /
    • 2016
  • 본 논문에서는 기계학습과 관련된 다양한 사례들에 대한 연구를 바탕으로 기계학습 응용 및 학습 알고리즘의 성능 개선 방안을 제시한다. 이를 위해 기계학습 기법을 적용하여 결과를 얻어낸 문헌을 자료로 수집하고 학문분야로 나누어 각 분야에서 적합한 기계학습 기법을 선택 및 추천하였다. 공학에서는 SVM, 의학에서는 의사결정나무, 그 외 분야에서는 SVM이 빈번한 이용 사례와 분류/예측의 측면에서 그 효용성을 보였다. 기계학습의 적용 사례분석을 통해 응용 방안의 일반적 특성화를 꾀할 수 있었다. 적용 단계는 크게 3단계로 이루어진다. 첫째, 데이터 수집, 둘째, 알고리즘을 통한 데이터 학습, 셋째, 알고리즘에 대한 유의미성 테스트 이며, 각 단계에서의 알고리즘의 결합을 통해 성능을 향상시킨다. 성능 개선 및 향상의 방법은 다중 기계학습 구조 모델링과 $+{\alpha}$ 기계학습 구조 모델링 등으로 분류한다.

머신러닝 기반 고춧가루 원산지 판별기법 (Detection of Red Pepper Powders Origin based on Machine Learning)

  • 유성민;박민서
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.355-360
    • /
    • 2022
  • 최근 국내산 고추의 생산 비용 상승과 수입산 고추의 도입으로 고춧가루 원산지 허위표기 등의 피해사례가 속출하고 있다. 이에 따라 원산지를 신속하고 정확하게 판별하는 문제가 대두되었다. 기존의 고춧가루 원산지 판별법의 경우 무기 및 유기성분을 실험적으로 대조 및 분석하여 비용과 시간이 많이 든다는 한계가 있다. 이를 보완하기 위해, 본 연구는 머신러닝을 도입하여 국내산, 수입산 고춧가루 분류를 제안한다. 고춧가루에 포함된 53가지 성분에 대하여 머신러닝 모델을 설계하고 검증하였다. 본 연구를 통해 어떠한 성분이 원산지 판별 시 중요하게 활용되는지 파악 할 수 있었다. 추후 고춧가루뿐만 아니라 다양한 식품으로 확장하여 원산지 판별에 드는 비용을 보다 줄일 수 있을 것으로 기대된다.

공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형 (Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert)

  • 최원근;김흥섭;고봉진
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-118
    • /
    • 2023
  • 스마트팩토리의 구축을 위해서는 제조환경에서 여러 센서 및 기기 등을 연결하여 데이터를 수집하고, 데이터 분석을 통해 생산설비 등의 장애를 진단하거나 예측하여야 한다. 본 논문에서는 공작기계에서 제품을 가공하기 위해 사용되는 절삭용 인서트의 잔여 유효 수명을 예측하기 위해 진동 신호를 기반으로 한 가중화 k-최근접이웃(Weighted k-NN) 알고리즘, 의사결정나무(Decision Tree), 서포트벡터회귀(SVM), XGBoost, 랜덤포레스트(Random forest), 1차원 합성곱신경망(1D-CNN), 그리고 진동 신호를 FFT한 주파수 스펙트럼에 대해 알아보았다. 연구결과, 주파수 스펙트럼으로는 잔여 유효수명의 정확한 예측에 대해서는 신빙성있는 기준을 제공하지 못한다는 것을 알수 있었고, 예측 모델 중 가중화 k-최근접이웃 알고리즘이 MAE가 0.0013, MSE가 0.004, RMSE가 0.0192로 가장 우수한 성능을 나타내었다. 이는 가중화 k-최근접이웃 알고리즘에 의해 예측되는 인서트의 잔여 유효 수명의 오차가 0.001초 수준으로 평가되어, 실제 산업현장에 적용이 가능한 수준으로 사료된다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

동적계획법 적용에 의한 삼나무 임분의 간벌시업체계 분석 (Analysis of Optimal Thinning Prescriptions for a Cryptomeria japonica Stand Using Dynamic Programming)

  • 한희;권기범;정혜진;설아라;정주상
    • 한국산림과학회지
    • /
    • 제104권4호
    • /
    • pp.649-656
    • /
    • 2015
  • 이 연구의 목적은 국립산림과학원 한남시험림의 삼나무조림지에서 목재 및 탄소 경영을 위한 최적의 간벌시업체계를 결정하기 위해 수행되었다. 이 문제를 풀기 위해 Paderes and Brodie에 의해 개발된 PATH 알고리즘을 의사결정 지원체계로 그리고 임분생장예측을 위해 권기범 등이 개발한 임분생장모델을 적용하였다. 이 임분생장모델은 개체목간의 거리에 대한 고려가 없이 임목의 고사나 간벌과 같은 임분밀도 조절 요인에 의한 생장효과를 예측할 수 있다. 분석 결과 순현재가를 극대화하기 위한 목재생산경영은 탄소흡수량을 극대화하기 위한 탄소경영에 비해 간벌의 횟수는 적었지만 간벌강도가 상대적으로 큰 값으로 나타났다. 탄소경영의 경우 목재생산경영에 비해 탄소흡수량이 약 6% 증가한데 비해 순수익은 약 3.2% 감소하는 것으로 나타났다. 한편 탄소경영이나 목재생산경영을 위한 집약적 경영은 무간벌 시업조건을 전제로 하는 '무간벌 대조구'의 경우에 비해 약 60% 정도의 탄소흡수 및 순수익 증진효과가 있는 것으로 나타났다.

기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석 (Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning)

  • 이만형;유선아
    • 한국과학교육학회지
    • /
    • 제41권3호
    • /
    • pp.203-220
    • /
    • 2021
  • 이 연구는 과학적 논증 담화에 대한 자동 채점의 성능 개선 방향을 탐색하였으며, 자동 채점 모델을 활용하여 논증 담화의 양상과 패턴을 분석하였다. 이를 위해 과학적 논증 수업에서 발생한 학생 발화를 대상으로 논증 수준을 평가하는 자동 채점을 수행하였다. 이 자동 채점의 데이터셋은 4가지 단위의 논증 피처와 논증 수준 평가틀로 구성되었다. 특히, 자동 채점에 논증 패턴을 반영하기 위하여 논증 클러스터와 n-gram을 활용하였다. 자동 채점 모델은 3가지의 지도 학습 기법으로 구성되었으며, 그 결과 총 33개의 자동 채점 모델이 구성되었다. 자동 채점의 결과, 최대 85.37%, 평균 77.59%의 채점 정확도를 얻었다. 이 과정에서 논증 담화의 패턴이 자동 채점의 성능을 개선하는 주요한 피처임을 확인하였다. 또한, 의사결정 나무와 랜덤 포레스트의 모델을 통하여 과학적 논증 수준에 따른 논증의 양상과 패턴을 분석하였다. 이를 통하여 주장, 자료와 함께 정당화가 체계적으로 구성된 과학적 논증과 자료에 대한 활발한 상호작용이 이루어진 과학적 논증이 논증 수준의 발달을 이끈다는 점 등을 확인하였다. 이와 같은 자동 채점 모델의 해석은 논증 패턴을 분석하는 새로운 연구 방법을 제언하는 것이다.

통계와 시각화를 결합한 데이터 분석: 예측모형 대한 시각화 검증 (Data analysis by Integrating statistics and visualization: Visual verification for the prediction model)

  • 문성민;이경원
    • 디자인융복합연구
    • /
    • 제15권6호
    • /
    • pp.195-214
    • /
    • 2016
  • 예측 분석은 패턴인식(Pattern recognition) 혹은 기계학습(Machine learning)으로 불리는 확률적 학습 알고리즘을 기반으로 하기 때문에 사용자가 분석 과정에 개입하여 더 많은 정보를 얻어내기 위해서는 높은 통계적 지식수준이 요구된다. 또한 사용자는 분석 결과외의 다른 정보를 확인 할 수 없고 데이터의 특성 변화와 데이터 하나하나의 특징을 파악하기 힘들다는 단점이 있다. 본 연구는 이러한 예측분석의 단점을 보완하고자 통계적인 데이터 분석 방법과 시각화 분석 방법을 결합하여 데이터 분석을 진행하였으며 통계적인 분석 방법만을 진행 할 경우 발생하는 단점을 보완하고 데이터에서 더 많은 정보를 도출해 내기 위한 방법론을 제시 하고자하였다. 이를 위해 본 연구는 영화 리뷰에서 추출한 감정 어휘가 독립변인이고 영화의 흥행 값이 종속변인인 데이터를 예제 데이터로 활용하여 진행하였다. 본 연구의 연구 방법론을 적용하였을 때의 이점은 다음과 같다. 첫째, 의사결정나무 분석에서 제시된 분할 기준이 적용될 때 마다 변하는 데이터의 패턴을 파악할 수 있다. 둘째, 제시된 최종 예측모형에 포함된 데이터들의 특성을 확인 할 수 있다. 본 연구의 시사점은 예측모형의 단점을 보완하고 데이터로부터 더 많은 정보를 추출하기 위해 통계적인 데이터 분석과 시각적인 데이터 분석을 결합하여 시행하였다는 것이다. 통계적인 분석 방법을 통해 각 변수의 관계를 파악하고 높은 예측 값을 가지는 모형을 도출하였으며, 시각화 분석에서는 인터랙션 기능을 제공함으로서 통계적으로 제시된 예측모형을 검증하고 더 다양한 정보를 도출 할 수 있게 하였다.

머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발 (Building battery deterioration prediction model using real field data)

  • 최근호;김건우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.243-264
    • /
    • 2018
  • 현재 전세계 배터리 시장은 이차전지 개발에 박차를 가하고 있는 실정이지만, 실제로 소비되는 배터리 중 가격 대비 성능이 좋고 재충전을 통해 다시 재사용이 가능한 납축전지(이차전지)의 소비가 광범위하게 이루어지고 있다. 하지만 납축전지는 복합적 셀(cell)을 묶어 하나의 배터리를 구성하여 활용하는 배터리의 특성상 하나의 셀에서 열화가 발생하면 전체 배터리의 손상을 가져와 열화가 빨리 진행되는 문제가 존재한다. 이를 극복하기 위해 본 연구는 기계학습을 통한 배터리 상태 데이터를 학습하여 배터리 열화를 예측할 수 있는 모델을 개발하고자 한다. 이를 위해 실제 현장에서 배터리 상태를 지속적으로 모니터링 할 수 있는 센서를 골프장 카트에 부착하여 실시간으로 배터리 상태 데이터를 수집하고, 수집한 데이터를 이용하여 기계학습 기법을 적용한 분석을 통해 열화 전조 현상에 대한 예측 모델을 개발하였다. 총 16,883개의 샘플을 분석 데이터로 사용하였으며, 예측 모델을 만들기 위한 알고리즘으로 의사결정나무, 로지스틱, 베이지언, 배깅, 부스팅, RandomForest를 사용하였다. 실험 결과, 의사결정나무를 기본 알고리즘으로 사용한 배깅 모델이 89.3923%이 가장 높은 적중률을 보이는 것으로 나타났다. 본 연구는 날씨와 운전습관 등 배터리 열화에 영향을 줄 수 있는 추가적인 변수들을 고려하지 못했다는 한계점이 있으나, 이는 향후 연구에서 다루고자 한다. 본 연구에서 제안하는 배터리 열화 예측 모델은 배터리 열화의 전조현상을 사전에 예측함으로써 배터리 관리를 효율적으로 수행하고 이에 따른 비용을 획기적으로 줄일 수 있을 것으로 기대한다.

데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례 (Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market)

  • 이선아;장남식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.161-177
    • /
    • 2015
  • 정보기술의 빠른 진화, 빅데이터의 등장, 분석기법의 고도화 등으로 인해 다량의 데이터로부터 의미있는 정보를 추출하는 데이터마이닝을 다양한 영역에 활용하고자 하는 시도들이 활발히 진행되고 있다. 그 중의 한 분야가 농산물 유통영역인데, 농산물에 대한 지속적인 수요 증가와 전자경매의 활성화 등으로 수도권 농산물 도매시장에서만도 연간 수천만건 이상의 거래가 이루어 진다. 그러나 급속한 거래량 증가와 더불어 과거로부터 관행적으로 이루어지고 있는 부정거래도 함께 증가하고 있는데 거래참가자들 사이의 결탁에 의해 발생하는 농산물 도매시장의 부정거래는 점차 지능화되는 추세이며, 이들을 감지하고 적발하기가 매우 어려운 실정이다. 이로 인해 농산물 유통환경의 공정거래 질서는 침해되고 시장에 대한 신뢰는 훼손되곤 한다. 따라서 거래투명성을 제고하고 유통비리를 구조적으로 개선하기 위한 과학적이고 자동화된 부정탐지시스템의 필요성이 어느 때보다도 절실히 요구되는 상황이다. 본 연구에서는 데이터마이닝의 의사결정나무를 이용하여 실제 발생하지 않은 거래를 실물 없이 거래한 것처럼 조작하여 대금을 정산하는 행위인 허위거래를 탐지하는 모형을 제시하였다. 이를 위해 실제 농산물 도매시장의 데이터를 수집하였고, 데이터의 정제 및 표준화 등의 선행작업을 수행하였다. 또한 변수 간의 상관관계 및 분포도 분석 등을 통해 데이터의 특성을 파악한 후 예측모형을 구축하여 허위거래와 정상거래를 분류하는 패턴을 도출하였으며, 최종적으로 시험용 데이터를 이용하여 모형을 평가하는 단계를 거쳐 결과의 적합성을 확인하였다. 향후 데이터마이닝을 이용한 부정탐지 모형을 허위거래뿐만 아니라 낙찰부정, 경매조작 등과 같이 다양화되는 부정거래에 적용하게 되면 보다 지대한 효과를 거둘 수 있으리라 사료된다.