• Title/Summary/Keyword: 의사결정기법

Search Result 1,624, Processing Time 0.033 seconds

Development of Flood Forecasting and Warning Technique in a Tidal River Using Bayesian Network (감조하천의 Bayesian Network를 활용한 홍수 예·경보 기법 개발)

  • Lee, Myung Jin;Song, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.422-422
    • /
    • 2022
  • 최근 기후변화와 도시화 등의 영향으로 인해 전 지구적으로 홍수 피해의 규모와 홍수발생 빈도가 증가하고 있다. 특히, 전 세계 인구의 약 50% 이상이 거주하고 있는 연안지역의 홍수피해 위험성은 급격히 증가하고 있는 추세이며, 각 국가는 홍수 피해를 저감하고 예방하기 위한 노력을 지속적으로 기울이고 있다. 본 연구에서는 연안지역의 감조하천을 대상으로 홍수 예경보 의사결정기법을 개발하고자 하였다. 이를 위해 감조하천에서 관측된 수위는 조석에 의한 수위(조석 성분), 파고에 의한 수위(파고 성분), 강우에 의한 수위(강우-유출 성분), 그리고 잡음에 의한 수위(잡음 성분)의 4가지 수문 성분으로 구성되어 있다고 정의하였고, 감조하천의 예측 강우 성분에 해당하는 예측 수위를 추정하기 위해 수위-유량 관계 곡선식을 개발하고자 하였다. 또한 각 수문 성분별 위기 경보 단계를 설정하고, Bayesian Network를 활용하여 수문 성분들의 위험을 종합적으로 고려할 수 있는 홍수 예·경보 의사결정 기법을 개발하였다. 3가지 난수 발생 방법에 따라 Bayesian Network 모형을 통해 다양한 수문 조건에 따른 조건부 확률을 산정하였으며, 정확도 검토를 수행한 결과 F-1 Socre가 25.1%, 63.5% 및 82.3%의 정확도를 보였다. 향후 본 연구에서 제시한 방법론을 활용한다면 기상청에서 제공하고 있는 예측 강우 및 GRM 모형을 통해 유출량을 산정하고, 이를 예측 수위로 변환하여 연안 지역의 홍수 위험도 매트릭스를 통해 홍수 예·경보에 대한 의사결정을 수행할 수 있을 것으로 판단된다.

  • PDF

Application of 4th Industrial Revolution Technology to Implement Smart-Eco River (스마트 에코 리버 구현을 위한 4차산업혁명 기술의 적용)

  • Kim, Sunghoon;Jang, Suhyung;Lee, Eulrae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.11-11
    • /
    • 2020
  • 18년 물관리일원화 이후 인프라와 사람 중심으로부터 자연과 인간의 조화를 위한 환경·생태계의 자연성 회복으로의 물관리 패러다임 전환이 빠르게 이루어지고 있으며, 대규모 국책사업이후의 하천 관리에 있어서도 기존의 이수, 치수, 환경이라는 단순한 기능적 구분을 벗어나 보다 근본적이고 장기적인 대국민 서비스로의 전환을 도모하고 있다. 또한, ICBAM 등으로 정의되는 4차산업혁명 기반 기술의 접목이 거의 대부분의 분야에서 이루어지고 있는 것을 실질적으로 체감하는 시기가 도래하였다. 그러나, 하천 및 수자원 관리분야에서의 기술은 근대 엔지니어링의 기초가 되는 수로 건설 등으로부터 시발되어 사실상 가장 앞선 과학적 진보의 토대를 갖추었으나 최근의 기술적 트렌드를 잘 추종하지 못하는 것처럼 비추어 지는 것이 사실이다. 주된 이유로서 기후변화라는 광범위하고 장기적인 입력요소를 가진 하천관리 시스템의 특성상 불확실성의 추정 및 즉각적인 응답이 어려운 부분이 분명히 존재하지만, 실질적으로 여전히 해소되지 않는 부분은 하천의 기초자료 수집에 대한 효율성과 신뢰도가 낮은 것이라고 하겠다. 또한, 유역으로부터 댐-다기능보-하천으로 이어지는 의사결정을 위한 다양한 형태의 자료로부터 적절한 정보를 수집하는 체계(거버넌스의 문제이자 기술적/재정적 한계)가 확립되지 않은 점도 고려해야 할 것이다. 본 연구에서는 인공지능을 활용한 하천의 유량 예측 등을 위해 필요한 수자원 기초데이터의 근원적인 수집 및 관리상의 문제점에 대해서 검토하고자 하였으며, ARIMA, Kalman Filtering, MA 및 복합기법을 통한 자료처리 기법을 적용하여 상황에 맞게 오차 및 불확실성의 저감을 위한 방안을 찾고자 하였다. 또한, 이용자 중심의 하천 관리에 근접한다고 볼 수 있는 스마트워터시티 개념에서의 바람직한 하천관리 기법에 대해서 논의하고, 관련하여 근자에 개발한 하천의 물리적 해석 도구들에 대해서 적용 사례를 검토한다. 마지막으로, 지식기반의 하천관리 의사결정 플랫폼 개발을 위해서 기존의 기계학습을 통한 자동화된 의사결정에 부가하여 전문가와 시스템이 상호작용을 통해서 AI를 학습시켜 결정한 사항을 전문가의 의사결정에 참고하는 MCRDR기법의 적용의 적용 가능성과 도입 방향에 대해서 논의하였다.

  • PDF

The Strategic Decision Supports using Knowledge Transformation Process (지식변환과정을 활용한 전략적 의사결정지원 방법론에 관한 연구)

  • Park, Ki-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.55-65
    • /
    • 2008
  • The strategic decision makers of the firm have faced with uncertainty and complexity. Although they must make decision under these environments, they can't have enough time, man power, budget and knowledge that they need to decide. They can't, therefore, help getting supports by experts who have implicit knowledge about the domain. But it is difficult for them to find any other procedures and methods to create, transform, combine, and apply new knowledges, whenever decision makers face the problem This paper provides a new method to support a strategic decision making by using the knowledge transformation process suggested by Nonaka. We illustrate an application case of the strategic decision making in consulting industry. This paper uses cognitive map as a decision support technology based on the suggested method.

  • PDF

Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis (효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.47-73
    • /
    • 2023
  • Management decision-making based on artificial intelligence(AI) plays an important role in helping decision-makers. Business decision-making centered on AI is evaluated as a driving force for corporate growth. AI-based on accurate analysis techniques could support decision-makers in making high-quality decisions. This study proposes an effective decision-making method with the application of multi-label feature selection. In this regard, We present a CFS-BR (Correlation-based Feature Selection based on Binary Relevance approach) that reduces data sets in high-dimensional space. As a result of analyzing sample data and empirical data, CFS-BR can support efficient decision-making by selecting the best combination of meaningful attributes based on the Best-First algorithm. In addition, compared to the previous multi-label feature selection method, CFS-BR is useful for increasing the effectiveness of decision-making, as its accuracy is higher.

Study on the Classification Methodology for DSRC Travel Speed Patterns Using Decision Trees (의사결정나무 기법을 적용한 DSRC 통행속도패턴 분류방안)

  • Lee, Minha;Lee, Sang-Soo;Namkoong, Seong;Choi, Keechoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper, travel speed patterns were deducted based on historical DSRC travel speed data using Decision Tree technique to improve availability of the massive amount of historical data. These patterns were designed to reflect spatio-temporal vicissitudes in reality by generating pattern units classified by months, time of day, and highway sections. The study area was from Seoul TG to Ansung IC sections on Gyung-bu highway where high peak time of day frequently occurs in South Korea. Decision Tree technique was applied to categorize travel speed according to day of week. As a result, five different pattern groups were generated: (Mon)(Tue Wed Thu)(Fri)(Sat)(Sun). Statistical verification was conducted to prove the validity of patterns on nine different highway sections, and the accuracy of fitting was found to be 93%. To reduce travel pattern errors against individual travel speed data, inclusion of four additional variables were also tested. Among those variables, 'traffic condition on previous month' variable improved the pattern grouping accuracy by reducing 50% of speed variance in the decision tree model developed.

A Determining System for the Category of Need in Long-Term Care Insurance System using Decision Tree Model (의사결정나무기법을 이용한 노인장기요양보험 등급결정모형 개발)

  • Han, Eun-Jeong;Kwak, Min-Jeong;Kan, Im-Oak
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.145-159
    • /
    • 2011
  • National long-term care insurance started in July, 2008. We try to make up for weak points and develop a long-term care insurance system. Especially, it is important to upgrade the rating model of the category of need for long-term care continually. We improve the rating model using the data after enforcement of the system to reflect the rapidly changing long-term care marketplace. A decision tree model was adpoted to upgrade the rating model that makes it easy to compare with the current system. This model is based on the first assumption that, a person with worse functional conditions needs more long-term care services than others. Second, the volume of long-term care services are de ned as a service time. This study was conducted to reflect the changing circumstances. Rating models have to be continually improved to reflect changing circumstances, like the infrastructure of the system or the characteristics of the insurance beneficiary.

외항 상선 해기사의 이직의사 결정요인에 관한 연구

  • Kim, Yong-Du;Ryu, Dong-Geun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.197-199
    • /
    • 2015
  • 장기간 선박이라는 공간에서 생활하면서 이가정성과 이사회성 등의 특성을 갖는 외항상선해기사들이 이직을 고려할 때 어떤 요인으로 의사결정하게 되는지에 대하여 AHP기법을 이용하여 분석하고, 이직율을 낮출 수 있는 대안을 모색하였다.

  • PDF

Optimum Structural Design Using AHP Technique (AHP 기법을 이용한 최적 구조 설계)

  • Young-Soon Yang;Beom-Seon Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.82-89
    • /
    • 1999
  • A designer must make a lot of decisions in a design process. The decisions may be classified into selection decisions and compromise decisions. As the results of two decisions depends on the designer's intention it is necessary that the designer's intention should be reflected in the design systematically and precisely. As the AHP(Analytic Hierarchy Process) technique analyzes and evaluates a obscure selection problem hierarchically, designer's intention can be reflected in the design systematically. Also as qualitative attributes can be rated at quantitative criterion the designer's intention can be reflected consistently. Usually an engineering problem is a coupled problem in which a designer must select one alternative from a set of alternatives and find optimal characteristics of the alternative concurrently. As considered attributes are functions of the compromise system variables and the attributes's units and orders are different each other, attribute ratings must be normalized. This paper introduces a neural network at this normalization. So the attribute ratings can reflect designer's intention and the knowledge from his(her) experience automatically.

  • PDF

Grid Resource Selection System Using Decision Tree Method (의사결정 트리 기법을 이용한 그리드 자원선택 시스템)

  • Noh, Chang-Hyeon;Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In order to high-performance data Processing, effective resource selection is needed since grid resources are composed of heterogeneous networks and OS systems in the grid environment. In this paper. we classify grid resources with data properties and user requirements for resource selection using a decision tree method. Our resource selection method can provide suitable resource selection methodology using classification with a decision tree to grid users. This paper evaluates our grid system performance with throughput. utilization, job loss, and average of turn-around time and shows experiment results of our resource selection model in comparison with those of existing resource selection models such as Condor-G and Nimrod-G. These experiment results showed that our resource selection model provides a vision of efficient grid resource selection methodology.

  • PDF

Determination of Investment Priority for River Improvement Project at Downstream of Dams Using PROMETHEE (PROMETHEE 기법을 이용한 댐 직하류 하천정비사업 투자우선순위 결정)

  • Kim, Gil Ho;Sun, Seung Pyo;Yeo, Kyu Dong;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.41-51
    • /
    • 2012
  • Sometimes, there exist many alternatives for doing a SOC project. However, the limitation of the fund requires the determination of investment priority for the alternatives. This may be performed according to the degree of importance of individual alternatives. Especially, the river improvement project at the downstream of dams has complex and various values and this characteristics make it difficult decision-maker to do reasonable determination. This study aims to determine an investment priority of 33 alternatives in the river improvement project at the downstream of dams using PROMETHEE method which has advantages in determining the priority. In this study, we determined evaluation criteria and attributes by considering the functions and objectives of the river improvement project at the downstream of dams. The eigenvector method in AHP was used to estimate the relative importance of evaluation criterion. Based on the estimation, we determined investment priority of 33 alternatives by PROMETHEE method and the priority of alternatives was derived in the order of Juam regulation dam, Unmun dam, Yongdam dam and so on. The results of this study could provide a reasonable standard to the decision-maker for the determination of investment priority of alternatives.