• Title/Summary/Keyword: 의사결정기법

Search Result 1,624, Processing Time 0.033 seconds

A Comparison of MAUT, AHP and PROMETHEE for Multicriteria Decisions (다기준 의사결정기법의 비교 -PROMETHEE의 적용을 중심으로-)

  • 민재형;송영민
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-232
    • /
    • 2003
  • This study discusses the strengths and weaknesses of MAUT, AHP, and PROMETHEE as multicriteria decision making aids with respect to their underlying assumptions and axioms, and suggest the usefulness and limitations of PROMETHEE as a outranking method. For the demonstration purpose, we provide a numerical example to evaluate 3 domestic life insurers using PROMETHEE.

  • PDF

Decision Tree Algorithm with Improved Entropy Using an Expert Opinion (전문가 의견을 반영하는 향상된 의사결정나무의 엔트로피 기법)

  • Bak, Sun-Bin;Kim, Dong-Moon;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.239-242
    • /
    • 2007
  • 최근 데이터의 양이 많아지고 다양해짐에 따라서 데이터를 활용하기 위한 데이터 마이닝에 관한 관심이 중대되고 있다. 데이터 분석을 위한 수집 데이터에는 수집 과정에서 분석가가 원치 않은 데이터 잡음이 발생하는 경우가 있고 그 데이터가 다른 데이터들과 같은 가중치로 데이터 마이닝에 반영되는 경우 예상과 다른 결과를 얻을 수 있다. 따라서 데이터 분석 시 데이터와 전문가 의견이 고려된 데이터 엔트로피(Entropy)를 사용하여 잡음 데이터를 다를 필요가 있다. 본 논문에서는 전문가의견을 이용한 전문가 의견 목록을 만들고 이를 데이터와 비교하여 유사한 정도에 따라 각 데이터에 가중치를 부여한다. 그리고 이 데이터를 활용한 의사결정나무(Decision Tree)를 사용하여 기존 데이터를 이용한 의사결정나무 보다 데이터 잡음의 영향을 줄이는 방법을 제안한다. 제안한 방법은 학습자의 학습 활동에서 수집된 학습 행위 데이터를 사용하여 실험하였다.

  • PDF

A Study on the Data Fusion Method using Decision Rule for Data Enrichment (의사결정 규칙을 이용한 데이터 통합에 관한 연구)

  • Kim S.Y.;Chung S.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.291-303
    • /
    • 2006
  • Data mining is the work to extract information from existing data file. So, the one of best important thing in data mining process is the quality of data to be used. In this thesis, we propose the data fusion technique using decision rule for data enrichment that one phase to improve data quality in KDD process. Simulations were performed to compare the proposed data fusion technique with the existing techniques. As a result, our data fusion technique using decision rule is characterized with low MSE or misclassification rate in fusion variables.

Evaluating Efficiency of Life Insurance Companies Utilizing DEA and Machine Learning (자료봉합분석과 기계학습을 이용한 생명보험회사의 효율성 평가)

  • Hong, Han-Kook;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.63-79
    • /
    • 2001
  • Data Envelopment Analysis(DEA), a non-parametric productivity analysis tool, has become an accepted approach for assessing efficiency in a wide range of fields. Despite of its extensive applications and merits, some features of DEA remain bothersome. DEA offers no guideline about to which direction relatively inefficient DMUs improve since a reference set of an inefficient DMU, several efficient DMUs, hardly provides a stepwise path for improving the efficiency of the inefficient DMU. In this paper, we aim to show that DEA can be used to evaluate the efficiency of life insurance companies while overcoming its limitation with the aids of machine learning methods.

  • PDF

An Analysis of the Characteristics of Companies introducing Smart Factory System Using Data Mining Technique (데이터 마이닝 기법을 활용한 스마트팩토리 도입 기업의 특성 분석)

  • Oh, Jeong-yoon;Choi, Sang-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.179-189
    • /
    • 2018
  • Currently, research on smart factories is steadily being carried out in terms of implementation strategies and considerations in construction. Various studies have not been conducted on companies that introduced smart factories. This study conducted a questionnaire survey for SMEs applying the basic stage of smart factory. And the cluster analysis was conducted to examine the characteristics of the company. In addition, we conducted Decision Tree and Naive Bay to examine how the characteristics of a company are derived and compare the results. As a result of the cluster analysis, it was confirmed that the group was divided into the high satisfaction group and the low satisfaction group. The decision tree and the Naive Bay analysis showed that the higher satisfaction group has high productivity.

Classification of Regional Export Freight Generation based on Geovisual Analytics (시각적 공간분석학 기법을 활용한 지역별 수출화물 발생패턴 유형화)

  • Lee, Jung-Yoon;Ahn, Jae-Seong
    • Spatial Information Research
    • /
    • v.15 no.3
    • /
    • pp.311-322
    • /
    • 2007
  • Geovisual analytics is the new research area that looks fur the way to enable a truly synergetic work of human and visualization tool in analyzing spatio-temporal data. The research challenge for geovisual analytics is developing new geovisualization tools and enhancing human capabilities to analyse, envision, and reason a lot of spatio-temporal changes. With this research area, geovisual analytics is expected to be a new methodology for developing spatial decision support tools. This research is to integrate T scatter plot with computational method to classify the several patterns of the regional fright generation in Korea. The result of this work shows the capabilities provided by geovisual analytics to support spatial decision making.

  • PDF

A Fuzzy Agent System to Control the State Transition for an Autonomous Decision Making on Taxi Driving (택시 운행 중 상태변화에 대한 자율적 의사결정을 위한 퍼지 에이전트)

  • Lim, Chun-Kyu;Kang, Byung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.413-420
    • /
    • 2005
  • In this paper, we apply software agents, which use fuzzy logic and make autonomous decisions according to state transitions, to car driving environment. We carry out an experiment on artificial intelligent car driving in terms of real-time reactive agents. Inference techniques for constructing real-time reactive agents consider the settings with max-product inference, n-fuzzy rules, and n-associatives ($A_l,\;B_l),\;{\ldots}(A_n,\;B_n$). Then we perform defuzzification processes, extract a central value, and work out inference processes.

Decision Support System fur Arrival/Departure of Ships in Port by using Enhanced Genetic Programming (개선된 유전적 프로그래밍 기법을 이용한 선박 입출항 의사결정 지원 시스템)

  • Lee, K. H.;Rhee, W.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.383-389
    • /
    • 2001
  • 된 연구에서 대상으로 하고 있는 LG 정유 광양항 제품부두는 7 선석(Berth)에 재화중량(DWT) 300톤에서 48000 톤의 선박까지 다양한 선박이 이용하고 있으며, 해상의 기상상태에 따른 선박 입출향 통제 지침 설정이 어렵고, 현재 사용하고 있는 지침의 근거가 명확하지 않아 현재의 부두 운영이 비효율적이거나 안전성이 결여되어 있다고 할 수 있다. 따라서 이를 개선하기 위한 합리적인 부두운영 제한조건 개발이 절실히 요구되었다. 본 논문에서는 대상 부두의 특성, 대상 선박의 특성, 하중상태, 선박 운항자의 특성 등을 고려하여 해상/기상 상황(바람, 조류 및 파랑)에 따른 부두 입출항 가능 여부를 정량적으로 판단하고, 안전성 향상 방안을 제시할 수 있는 의사결정 시스템을 개발하고 5번, 7번 선석을 대상으로 이를 검증하였다. 여기서는 입출항 여부를 정량적으로 판단하여 결과를 제시하기 위해서 유전적 프로그래밍(Genetic Programming)을 이용한 기계학습 방법을 이용하였으며, GP의 방대한 계산량을 줄이기 위한 가중 선형 연상 기억(Weighted Linear Associative Memory: WLAM) 방법의 도입 및 전역 최적점을 쉽게 찾기 위한 Group of Additive Genetic Programming Trees(GAGPT)를 도입함으로써 학습 성능을 개선하였다.

  • PDF

A Study on the Development of Construction Dispute Predictive Analytics Model - Based on Decision Tree - (PA기법을 활용한 건설분쟁 예측모델 개발에 관한 연구 - 의사결정나무를 중심으로 -)

  • Jang, Se Rim;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.76-86
    • /
    • 2021
  • Construction projects have high potentials of claims and disputes due to inherent risks where a variety of stakeholders are involved. Since disputes could cause losses in terms of cost and time, it is a critical issue for contractors to forecast and pro-actively manage disputes in advance in order to secure project efficiency and higher profits. The objective of the study is to develop a decision tree-based predictive analytics model for forecasting dispute types and their probabilities according to construction project conditions. It can be a useful tool to forecast potential disputes and thus provide opportunities for proactive management.

Box Office Hit Prediction Using Data mining and Text mining (데이터마이닝과 텍스트마이닝을 활용한 영화 흥행 예측)

  • Jo, Hyo-jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.316-318
    • /
    • 2021
  • 영화 수익에 있어 영화의 흥행 여부는 중요한 영향을 끼친다. 영화 흥행 요인은 영화 산업의 규모가 커지면서 많은 제작사들 및 투자자들이 고려해야 하는 사항이 되었다. 따라서 영화의 흥행을 예측하기 위한 많은 모델이 연구되었다. 본 연구의 목적은 선행연구에서 흥행에 유의미한 영향을 끼친다고 밝혀진 스크린 수, 감독명, 제작사명 등의 내재적인 속성과 더불어 온라인 구전 변수를 사용하여 영화 흥행 예측 모델을 만드는 것이다. 이때 기사 수, 블로그 수와 같이 온라인 구전의 크기를 나타내는 변수들을 사용하는 대신 개봉 후 첫 주간의 관람객 리뷰를 텍스트마이닝을 이용하여 전체 리뷰 중 긍정 리뷰의 비율에 따라 점수를 매긴 후 독립변수로 사용한다. 그 후, 데이터 마이닝 기법을 활용하여 만든 모델에 앞서 언급한 독립변수를 입력 값으로 사용하여 영화의 흥행을 예측한다. 최종적으로 의사결정트리와 로지스틱회귀를 수행한 결과 영화 흥행에 영향을 주는 독립변수를 찾고 모델의 성능을 평가하였다. 로지스틱회귀의 결과 관객 수, 평점이 영화의 흥행에 특히 유의한 영향을 끼치는 변수로 선정되었고 리뷰 역시 유의한 변수로 선정되었다. 이때 만들어진 모델은 약 90%의 높은 수준의 정확도를 보여주었다. 의사결정트리의 결과 관객 수가 가장 중요한 변수로 선정되었다.