Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.378-378
/
2017
본 연구는 도시에서 발생하는 홍수에 대응하기 위해서 홍수취약요인을 구성하고 홍수 위험성을 기반으로 취약지역과 정도를 도출하는 동적의사결정 모형 구성을 목표로 한다. 취약 요인은 인명피해에 초점을 맞추었으며 발생 가능한 홍수의 규모에 따른 취약 요인의 대응역량 등을 반영하여 동적의사결정 모형을 구성하고자 한다. 홍수위험성 산정에는 예상되는 홍수 시나리오를 반영한 SWMM 모델링 결과를 이용하였으며, 취약요인은 델파이기법으로 구성하였다. 구성한 모형은 빈번하게 내수침수가 발생한 지역인 도림천 유역을 대상으로 적용성을 검토하였다. 수립된 모형은 홍수 위험성의 정도에 대하여 발생 가능한 인명피해 지역을 공간적으로 파악할 수 있도록 하며 인명피해 예상 수치를 제공할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.453-455
/
2023
본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.280-286
/
2005
본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.
본 연구는 여러 가지 데이터마이닝 기법으로부터 도출된 지식이 어떻게 인간의 판단에 영향을 미치는 가를 지식구조별, 자료특성별, 전문가지식의 일관성별로 실증적 연구를 하여 궁극적으로 전문가 의사결정에 도움이 되는 데이터마이닝 기법의 활용방안을 제시하고자 한다. 분석결과 전문가들의 판단은 데이터마이닝의 지식표현형태에 의한 영향을 많이 받고 있는 것으로 나타났으며, 특히 IF-THEN의 형태로 표현되는 명제형 지식구조에 가장 많은 신뢰를 갖는 것으로 나타났다. 특히 자료의 특성, 또는 전문가의 판단 일관성과 데이터마이닝 기법 사이에 상호작용효과가 있어 향후 데이터마이닝 기법을 활용하여 전문가의 의사결정을 돕고자 할 때는 이러한 차이점을 고려해야 하는 것으로 밝혀졌다.
본 연구는 여러 가지 데이터마이닝 기법으로부터 도출된 지식이 어떻게 인간의 판단에 영향을 미치는 가를 지식구조별, 자료특성별, 전문가지식의 일관성별로 실증적 연구를 하여 궁극적으로 전문가 의사결정에 도움이 되는 데이터마이닝 기법의 활용방안을 제시하고자 한다. 분석결과 전문가들의 판단은 데이터마이닝의 지식표현형태에 의한 영향을 많이 받고 있는 것으로 나타났으며, 특히 IF-THEN의 형태로 표현되는 명제형 지식구조에 가장 많은 신뢰를 갖는 것으로 나타났다. 특히 자료의 특성, 또한 전문가의 판단 일관성과 데이터마이닝 기법 사이에 상호작용효과가 있어 향후 데이터마이닝 기법을 활용하여 전문가의 의사결정을 돕고자 할 때는 이러한 차이점을 고려해야 하는 것으로 밝혀졌다.
Climate change is expected to worsen the depletion of streamflow in urban watershed. In this study, we therefore considered the treated wastewater (TWW) use as an adaptation strategy and devised a framework to identify prioritized areas for TWW use. An integrated framework that includes hydrological factors as well as social and environmental components were employed to determine the criteria for decision making. Fuzzy theory was employed to consider the uncertainties in the climate change scenarios and the weights of the performance value. All alternatives were evaluated using the fuzzy TOPSIS method. In addition, statistical method and decision making methods under complete uncertainty were used for robust decision making. As a result, ranking the alternatives using the fuzzy TOPSIS method and robust approach such as maximin, maximax, Hurwicz and equal likelihood criterion mitigated the level of uncertainty and ambiguity in each alternative. The finding of this study can be helpful in prioritizing water resource management projects considering various climate change scenarios.
Decision trees are mainly used for the classification and prediction in data mining. The distribution of spatial data and relationships with their neighborhoods are very important when conducting classification for spatial data mining in the real world. Spatial decision trees in previous works have been designed for reflecting spatial data characteristic by rating Euclidean distance. But it only explains the distance of objects in spatial dimension so that it is hard to represent the distribution of spatial data and their relationships. This paper proposes a decision tree based on spatial entropy that represents the distribution of spatial data with the dispersion and dissimilarity. The dispersion presents the distribution of spatial objects within the belonged class. And dissimilarity indicates the distribution and its relationship with other classes. The rate of dispersion by dissimilarity presents that how related spatial distribution and classified data with non-spatial attributes we. Our experiment evaluates accuracy and building time of a decision tree as compared to previous methods. We achieve an improvement in performance by about 18%, 11%, respectively.
Journal of the Korea Society of Computer and Information
/
v.25
no.2
/
pp.213-219
/
2020
In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.337-341
/
2010
최근들어 기상 이변에 따라 단시간에 집중되는 국지호우로 인하여 돌발홍수(Flash Flood)에 의한 피해가 빈번하게 발생하고 있다. 대하천의 경우에는 각 홍수 통제소에 의한 홍수 예경보 시스템(Flood Warning System)을 통하여 본류 구간에서의 인명 및 재산 피해가 과거에 비하여 상당히 감소하였으나 소하천에서는 반대로 피해가 증가하고 있는 실정이며, 따라서 돌발홍수에 대한 대비의 필요성이 증대되고 있는 실정이다. 본 연구에서는 돌발홍수로 인한 인명 및 재산 피해를 최소화하기 위하여 산지유역의 돌발홍수 발생 위험도를 평가할 수 있는 방법론을 제시하였다. 돌발홍수 위험도를 평가하기 위하여 고려되는 요소들로는 유역경사, 하천경사, 강우특성 등이며, 이러한 서로 다른 단위의 평가요소들을 종합적으로 고려하기 위하여 다기준의사결정방법 중 하나인 PROMETHEE 기법을 이용하였다. 주요 평가 인자들은 크게 지형특성, 지역특성 및 강우특성으로 구분되며, 각 평가 요소들간의 상대적인 가중치의 산정은 엔트로피 이론을 이용하였다. 본 연구에서 제안된 위험도 평가 방법은 그 적용성을 검증하기위하여 17개의 소유역들을 포함하고 있는 봉화군 유역에 적용되었다. 적용 결과 봉화군 유역 내 17개의 소유역들은 돌발홍수에 대한 상대적인 위험도에 따라 고 중 저위험군으로 분류되었으며, 과거 돌발홍수로 인한 피해 이력이 있는 소유역이 고위험군에 속해있는 결과를 나타냄으로써 본 연구의 방법론에 대한 적용성이 검증되었다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.131-134
/
2000
본 논문에서는 각 지역의 수중 음향 센서로부터 중앙의 정보 융합 센터로 전송되어진 동일한 또는 상이한 표적의 Identity 정보들을 종합해 최종적으로 표적의 Identity를 결정하는 Decision Fusion 기법을 다룬다. 기존의 연구는 표적의 속성 정보로부터 정보 융합을 통해 표적의 Identity를 선택하는 기법을 주로 다루고 있다. 그러나 본 논문에서는 기존의 연구보다 한 단계 나아가 선택된 표적의 Identity들로부터 운용자가 가장 합리적인 결정을 내릴 수 있도록 하는 표적의 Identity 결정을 위한 Decision Fusion 기법을 제안한다. 이러한 수중 음향 표적 식별 시스템에서의 Identity Decision Fusion 기법으로 Voting 기법, 센서 정보의 신뢰도를 고려한 Weighted Voting 기법, 그리고 다 기준 의사 결정 기법인 Analytic Hierarchy Process (AHP) 기법을 제안하고 그 성능을 평가한다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.