• 제목/요약/키워드: 의미 확장

검색결과 1,574건 처리시간 0.03초

진리함수와 의미론적 확장 - 진리치 함수, 진리연산 그리고 의미론적 확장 -

  • 양은석
    • 논리연구
    • /
    • 제3권
    • /
    • pp.27-51
    • /
    • 2000
  • 이글의 기본적인 목적은 2치를 포함한 다치 논리 체계들간의 관계를 검토하는 데 있다. 이를 위하여 여기서는 명제를 대상으로 한 형식 의미 해석체계들 간에 고러해야 할 의미론적 확장 개념을 분명히 하였다. 구체적으로 다음의 두 작업이 수행되었다 첫째로 2치와 다치 논리 또는 다치 논리들간에 적용될 만한 의미론적 확장 개념을 의미해석의 바탕을 이루는 진리치 함수와 진리연산에 맞게 정의하였다. 둘째로 정의의 적합성을 확장, 비확장 사례 증명을 통해 예증해 보였다.

  • PDF

워드 임베딩을 이용한 세종 전자사전 확장 (Extension Sejong Electronic Dictionary Using Word Embedding)

  • 박다솔;차정원
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.75-78
    • /
    • 2016
  • 본 논문에서는 워드 임베딩과 유의어를 이용하여 세종 전자사전을 확장하는 방법을 제시한다. 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%의 성능을 보였다. 의미 범주가 할당되지 않은 새로운 단어에 대해서도 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

  • PDF

워드 임베딩을 이용한 세종 전자사전 확장 (Extension Sejong Electronic Dictionary Using Word Embedding)

  • 박다솔;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-78
    • /
    • 2016
  • 본 논문에서는 워드 임베딩과 유의어를 이용하여 세종 전자사전을 확장하는 방법을 제시한다. 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%의 성능을 보였다. 의미 범주가 할당되지 않은 새로운 단어에 대해서도 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

  • PDF

의미적 연결 관계에 기반한 전자 카탈로그에서의 확장된 어휘 인덱스 구축 및 이를 이용한 검색 성능 향상 기법 (Construct ion of Keyword Index and Improved Search Methods for e-Catalogs Eased on Semantic Relationship)

  • 이동주;이태희;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.67-69
    • /
    • 2005
  • 본 논문에서는 기 구축된 전자 카탈로그를 의미적 연결 관계에 기초한 확장된 전자 카탈로그로 변환하는 방법을 제안한다. 이를 통해 구축된 확장된 전자 카탈로그에서 의미적 태깅에 의한 확장된 어휘 인덱스 구축 방안과, 이를 이용한 검색 성능 향상 기법을 제안한다. 기존의 전자 카탈로그는 상품 정보가 분류별로 생성된 테이블에 저장되고 저장된 테이블로부터 생성된 키워드 인덱스로부터 검색이 이루어 졌다. 이러한 검색은 상품이 가지는 정보를 데이터베이스에 구축된 테이블에만 한정하게 되어 전자 카탈로그에 포함된 상품이나 분류간의 의미적 연결 관계들을 충분히 이용하지 못하였다 전자 카탈로그에 내재된 의미적 요소를 충분히 활용하기 위해서는 전자 카탈로그를 의미적 연결 관계에 기초한 모델로 구성할 필요가 있다. 본 논문에서는 의미적 모델 기반 전자 카탈로그 시스템으로의 전환 과정을 XML형태의 명세를 이용해 반자동적으로 전환할 수 있는 툴을 구현하며, 단순 키워드 어휘 인덱스 구축이 아닌, 어휘 인덱스의 의미적 확장을 제안하고, 이를 위한 태그 요소로써 어휘에 대한 형태소 분석 결과, 수치 환산 및 확장 요소, 속성간의 도메인 정보 등을 제시하였다. 이를 기반으로 최적의 검색 결과를 얻어 내도록 하는 인접도 평가 함수에 적용하는 방법을 제시한다.

  • PDF

의미 기반의 질의 분석 및 확장 (Question Analysis and Expansion based on Semantics)

  • 신승은;박희근;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제7권7호
    • /
    • pp.50-59
    • /
    • 2007
  • 본 논문에서는 효율적인 정보검색을 위한 의미 기반의 질의 분석 및 확장을 제안한다. 기존의 정보검색 시스템들은 사용자 질의로 자연언어 질의를 허용하고 있지만 단순히 명사 단어의 색인어를 사용자 질의로부터 추출하여 정보검색에 활용하기 때문에 사용자의 질의 의도를 반영한 정보검색을 하지 못한다. 이러한 문제점을 해결하기 위해서 의미 기반 질의 분석 및 확장은 사용자의 질의를 의미적으로 분석하여, 질의유형을 결정하고 의미 자질들을 추출한다. 추출된 의미 자질들과 정답을 표현하기 위해 사용되는 구문구조를 이용하여 사용자 질의를 확장한다. 또한 확장된 질의를 이용하여 정답을 포함하는 관련문서들을 정보검색 결과의 상위에 랭크시킬 수 있는 방법을 제시한다. 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대한 의미 기반의 질의 분석 및 확장을 통해 정보검색의 정확률을 향상시킬 수 있음을 보였다.

한국어 의미역 결정을 위한 Korean PropBank 확장 및 도메인 적응 기술 적용 (Extending Korean PropBank for Korean Semantic Role Labeling and Applying Domain Adaptation Technique)

  • 배장성;오준호;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.44-47
    • /
    • 2014
  • 한국어 의미역 결정(Semantic Role Labeling)은 주로 기계 학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에서 사용되는 Korean PropBank는 의미역 부착 말뭉치와 동사 격틀이 영어 PropBank의 1/8 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역 부착 말뭉치와 동사 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 의미역 부착 말뭉치를 만드는 일은 많은 자원과 시간이 소비되는 작업이다. 본 논문에서는 도메인 적응 기술을 적용해보고 기존의 학습 데이터를 활용하여, 적은 양의 새로운 학습 말뭉치만을 가지고 성능 하락을 최소화 할 수 있는지 실험을 통해 알아보고자 한다.

  • PDF

하위범주화 사전의 구축 및 자동 확장 (Development and Automatic Extraction of Subcategorization Dictionary)

  • 이수선;박현재;우요섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.179-181
    • /
    • 2000
  • 한국어의 통사적, 의미적 중의성 해결을 위해 하위범주화 사전을 구축하였다. 용언에 따라 제한될 수 있는 문형 패턴과 의미역(semantic roles) 정보의 표준을 정하여 이를 부가하였고 구축한 하위범주화 사전이 명사에 대한 의미를 갖고 있는 계층 시소러스 의미사전과 연동하도록 용언과 명사와의 의미적 연어 관계에 따라 의미마커를 부여했다. 논문에서 구현된 하위범주화 사전이 구문과 어휘의 중의성을 어느 정도 해소하는지 확인하기 위해 반자동적으로 의미 태깅(Sense Tagging)된 말뭉치와 구문분석된 말뭉치를 통해 검증 작업을 수행했다. 이 과정에서 자동으로 하위범주 패턴에 대한 빈도 정보나, 연어정보, 각 의미역과 용언의 통계적 공기 정보 등을 추출하여 하위범주화사전에 추가시켰다. 또한 여기서 얻은 정보를 기준으로 하위범주화 사전을 자동으로 확장하는 알고리즘을 적용하여 확장시켰다.

  • PDF

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

액션의미방식에 의한 언어모듈의 정의와 확장 (Defining and Extending Language Modules: An Action Semantics Approach)

  • 도경구
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권8호
    • /
    • pp.902-911
    • /
    • 2000
  • 언어의 의미정의모듈은 서로 밀접하게 관련 있는 개념과 연산의 의미구조를 모아 놓은 집합이다. 이 논문은 액션 의미표기법으로 의미정의모듈을 구성하고 확장하는 방법을 제시한다. 표현중심언어 핵심 모듈을 먼저 정의하고, 바인딩, 블록구조, 파라미터, 고차 표현식(함수)에 대한 확장 모듈을 정의한다. 그리고 의미의 획일성과 직교성이 보장되도록 의미정의 모듈들을 합성하면 더 복잡한 언어를 구축할 수 있음을 보인다.

  • PDF

단어 의미 표현과 질병 중심 의학 문서 클러스터 기반 의학 문서 검색 기법 (Method of Document Retrieval Using Word Embeddings and Disease-Centered Document Clusters)

  • 조승현;이경순
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.51-55
    • /
    • 2016
  • 본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.

  • PDF