• Title/Summary/Keyword: 의미정보 말뭉치

Search Result 178, Processing Time 0.025 seconds

A Method of Word Sense Disambiguation for Korean Complex Noun Phrase Using Verb-Phrase Pattern and Predicative Noun (기계 번역 의미 대역 패턴을 이용한 한국어 복합 명사 의미 결정 방법)

  • Yang, Seong-Il;Kim, Young-Kil;Park, Sang-Kyu;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.246-251
    • /
    • 2003
  • 한국어의 언어적 특성에 의해 빈번하게 등장하는 명사와 기능어의 나열은 기능어나 연결 구문의 잦은 생략현상에 의해 복합 명사의 출현을 발생시킨다. 따라서, 한국어 분석에서 복합 명사의 처리 방법은 매우 중요한 문제로 인식되었으며 활발한 연구가 진행되어 왔다. 복합 명사의 의미 결정은 복합 명사구 내 단위 명사간의 의미적인 수식 관계를 고려하여 머리어의 선택과 의미를 함께 결정할 필요가 있다. 본 논문에서는 정보 검색의 색인어 추출 방법에서 사용되는 복합 명사구 내의 서술성 명사 처리를 이용하여 복합 명사의 의미 결정을 인접 명사의 의미 공기 정보가 아닌 구문관계에 따른 의미 공기 정보를 사용하여 분석하는 방법을 제시한다. 복합 명사구 내에서 구문적인 관계는 명사구 내에 서술성 명사가 등장하는 경우 보-술 관계에 의한 격 결정 문제로 전환할 수 있다. 이러한 구문 구조는 명사 의미를 결정할 수 있는 추가적인 정보로 활용할 수 있으며, 이때 구문 구조 파악을 위해 구축된 의미 제약 조건을 활용하도록 한다. 구조 분석에서 사용되는 격틀 정보는 동사와 공기하는 명사의 구문 관계를 분석하기 위해 의미 정보를 제약조건으로 하여 구축된다. 이러한 의미 격틀 정보는 단문 내 명사들의 격 결정과 격을 채우는 명사 의미를 결정할 수 있는 정보로 활용된다. 본 논문에서는 현재 개발중인 한영 기계 번역 시스템 Tellus-KE의 단문 단위 대역어 선정을 위해 구축된 의미 대역패턴인 동사구 패턴을 사용한다. 동사구 패턴에 기술된 한국어의 단문 단위 의미 격 정보를 사용하는 경우, 격결정을 위해 사용되는 의미 제약 조건이 복합 명사의 중심어 선택과 의미 결정에 재활용 될 수 있으며, 병렬말뭉치에 의해 반자동으로 구축되는 의미 대역 패턴을 사용하여 데이터 구축의 어려움을 개선하고자 한다. 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(

  • PDF

Analyzing and Extracting Relations between Topic Keywords Based on Word Formation (조어 중심적 주제어간 관계 추출 및 분석)

  • Jung, Han-Min;Lee, Mi-Kyoung;Sung, Won-Kyung
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2008.06a
    • /
    • pp.166-171
    • /
    • 2008
  • 본 연구는 기존에 잘 알려지고 널리 사용되고 있는 어휘 의미망이나 시소러스를 활용하기 어려운 과학 기술 분야, 특히 IT 분야에서 대용량 용어간 관계를 빠른 시간 내에 구축하여 검색 브라우징, 내비게이션 용도로 활용하는 것을 목표로 한다. 시소러스 구축 절차를 따르는 경우에 분야 전문가에 의한 정교한 작업과 고비용을 필요로 하여 충분한 구축 크기를 확보하는 것에 현실적인 어려움이 있다. 시소러스 자동 구축 방법론을 사용하는 경우에도 해당 용어들이 출현하는 방대한 말뭉치를 확보해야 하며 관계 구축 결과에 대한 직관적 이해가 쉽지 않다는 단점이 있다. 본 연구는 해외 학술 논문 말뭉치와 메타데이터에서 획득한 37만 여 주제어들을 이용하여 상 하위 관계, 관련어, 형제 관계를 추출하기 위해 조어적 기준에 근거한 규칙들을 이용한다. 이들 규칙을 이용하여 추출한 관계 수는 상 하위 관계 60여 만 개, 관련어 640여 만 개, 형제 관계 2,000여 만 개 등이다. 또한, 추출 결과 중 일부를 수작업으로 분석하여 단순한 추출 규칙에서 발생하는 오류 유형을 찾아내고 향후 과제에서 해결할 수 있는 방안에 대해 논하자고 한다.

  • PDF

A Study on the Sentence Pattern of the Korean Language for Machine Translation (기계 번역을 위한 한국어 문장 패턴에 관한 연구)

  • Song, Jae-Gwan;Hong, Sung-Woong;Park, Chan-Khon
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.308-312
    • /
    • 1996
  • 본 연구에서 말뭉치를 이용하여 기계 번역을 위한 한국어 문장 패턴을 추출하였다. 문장 패턴은 해당 언어의 기본 문법 구조를 가지고 있기 때문에 언어 습득을 위해서 유용하다. 기계 번역을 위해서는 기본 문법 구조뿐만 아니라 각 단어간의 의미 관계를 나타낼 수 있어야 한다. 본 연구는 품사 태깅 및 명사에 의미 소성을 태깅하여 한국어의 문장 패턴을 추출하였다. 추출된 문장 패턴은 구문분석시 애매성을 해소할 수 있으며, 동음다의어의 해석이 가능하며, 의미의 부정합 판정이 가능하다.

  • PDF

Unsupervised Noun Sense Disambiguation using Local Context and Co-occurrence (국소 문맥과 공기 정보를 이용한 비교사 학습 방식의 명사 의미 중의성 해소)

  • Lee, Seung-Woo;Lee, Geun-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.769-783
    • /
    • 2000
  • In this paper, in order to disambiguate Korean noun word sense, we define a local context and explain how to extract it from a raw corpus. Following the intuition that two different nouns are likely to have similar meanings if they occur in the same local context, we use, as a clue, the word that occurs in the same local context where the target noun occurs. This method increases the usability of extracted knowledge and makes it possible to disambiguate the sense of infrequent words. And we can overcome the data sparseness problem by extending the verbs in a local context. The sense of a target noun is decided by the maximum similarity to the clues learned previously. The similarity between two words is computed by their concept distance in the sense hierarchy borrowed from WordNet. By reducing the multiplicity of clues gradually in the process of computing maximum similarity, we can speed up for next time calculation. When a target noun has more than two local contexts, we assign a weight according to the type of each local context to implement the differences according to the strength of semantic restriction of local contexts. As another knowledge source, we get a co-occurrence information from dictionary definitions and example sentences about the target noun. This is used to support local contexts and helps to select the most appropriate sense of the target noun. Through experiments using the proposed method, we discovered that the applicability of local contexts is very high and the co-occurrence information can supplement the local context for the precision. In spite of the high multiplicity of the target nouns used in our experiments, we can achieve higher performance (89.8%) than the supervised methods which use a sense-tagged corpus.

  • PDF

A Measure of Semantic Similarity and its Application in User-Word Intelligent Network (U-WIN을 이용한 의미 유사도 측정과 활용)

  • Im, Ji-Hui;Bae, Young-Jun;Choe, Ho-Seop;Ock, Cheol-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.189-193
    • /
    • 2007
  • 개념 간의 유사도 측정 방법은 의미망에서의 두 개념의 최단 경로의 수 노드의 깊이 관계의 종류 등의 정보를 이용하는 링크(Link) 기반 방법, 대용량의 말뭉치에서의 개념의 발생빈도를 확률로 계산한 정보량(Information Content) 기반 방법, 관련 단어들의 공기정보를 활용한 의미(Gloss) 기반 방법이 있으며, 이미 국외에서는 WordNet과 같은 의미적 언어자원을 활용하여 많은 연구가 진행되고 있다. 그러나 국내에서는 아직 한국어 의미망을 바탕으로 한 개념간의 유사성 측정 방법이나 이를 활용하는 방법에 대한 연구가 미흡하다. 본 논문에서는 이를 바탕으로 링크 타입 노드의 깊이 최단경로 정보량 등의 요소를 이용한 의미 유사도 측정방법을 제안하고 이를 활용하여 명사-용언간의 연계 정보를 확보함으로써, 효율적으로 명사-용언간의 네트워크를 구축하도록 한다.

  • PDF

Implementation of Dependency Parser using Argument Information based on Korean WordNet (한국어 어휘의미망에 기반한 논항 정보를 이용한 의존문법 구문분석기의 구현)

  • Im, Gyeong-Eop;Jung, Youngim;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.158-164
    • /
    • 2007
  • 한국어는 한 어절이 한 개 이상의 형태소로 이루어졌으며, 이 때문에 지역 중의성이 발생한다. 대부분의 선행 연구에서는 이러한 지역 중의성을 배제하거나, 태거를 사용하여 지역 중의성을 제거해왔다. 본 연구에서는 문장의 모든 형태소 분석에 대해 구문분석을 시도하며, 중의성을 제거하고자 적용된 의존문법 규칙과 구 묶음, 부사 하위범주화, 논항 정보 사전 이용 등의 다양한 기법을 설명하고, 구문분석 성능을 실험으로 나타낸다. 특히, 말뭉치마다 논항 정보 사전을 따로 구축하는 번거로움을 피하고자 한국어 어휘의미망을 사용한다.

  • PDF

Layerwise Semantic Role Labeling in KRBERT (KRBERT 임베딩 층에 따른 의미역 결정)

  • Seo, Hye-Jin;Park, Myung-Kwan;Kim, Euhee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.617-621
    • /
    • 2021
  • 의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.

  • PDF

Morphological Analysis with Adjacency Attributes and Phrase Dictionary (접속 특성과 말마디 사전을 이용한 형태소 분석)

  • Im, Gwon-Muk;Song, Man-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.129-139
    • /
    • 1994
  • This paper presents a morphological analysis method for the Korean language. The characteristics and adjacency information of the words can be obtained from sentences in a large corpus. Generally a word can be analyzed to a result by applying the adjacency attributes and rules. However, we have to choose one from the several results for the ambiguous words. The collected morpheme's adjacency attributes and relations with neighbor words are recorded in a well designed dictionaries. With this information, abbreviated words as well as ambiguous words can be almost analyzed successfully. Efficiency of morphological analyzer depends on the information in the dictionaries. A morpheme dictionary and a phrase dictionary have been designed with lexical database, and necessary information extracted from the corpus is stored in the dictionaries.

  • PDF

Con-Talky: Information Extraction and Visualization Platform for Communication of Construction Industry (Con-Talky: 건설 분야 전문가의 의사소통을 위한 정보 추출 및 시각화 플랫폼)

  • Shim, Midan;Park, Chanjun;Hur, Yuna;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.476-481
    • /
    • 2021
  • 본 논문은 용어의 비통일성과 문서의 다양성으로 인해 발생하는 건설분야 전문가들의 의사소통 문제를 해결하기 위한 Con-Talky를 제안한다. Con-Talky는 자연언어처리의 대표적인 기술인 형태소분석, 의존구문분석, 의미역 결정 기술을 융합하여 건설분야의 "설계기준문서"를 시각화하고 핵심 정보추출을 자동으로 해주는 플랫폼이다. 해당 플랫폼을 이용하여 토목분야 전문가들의 의사소통 문제를 완화시킬 수 있으며 용어의 비통일성 및 표준화에도 기여할 수 있다. 또한 본 논문은 국내 건설 및 토목분야에 최초로 자연언어처리 기술을 적용한 논문이다. 해당 분야의 연구를 활성화 하기 위해 건설분야에 특화된 단일 말뭉치와 트리플 데이터를 자체 제작함과 동시에 전면 공개하였다.

  • PDF

Statistical Word Sense Disambiguation based on using Variant Window Size (가변길이 윈도우를 이용한 통계 기반 동형이의어의 중의성 해소)

  • Park, Gi-Tae;Lee, Tae-Hoon;Hwang, So-Hyun;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.40-44
    • /
    • 2012
  • 어휘가 갖는 의미적 중의성은 자연어의 특성 중 하나로 자연어 처리의 정확도를 떨어트리는 요인으로, 이러한 중의성을 해소하기 위해 언어적 규칙과 다양한 기계 학습 모델을 이용한 연구가 지속되고 있다. 의미적 중의성을 가지고 있는 동형이의어의 의미분별을 위해서는 주변 문맥이 가장 중요한 자질이 되며, 자질 정보를 추출하기 위해 사용하는 문맥 창의 크기는 중의성 해소의 성능과 밀접한 연관이 있어 신중히 결정되어야 한다. 본 논문에서는 의미분별과정에 필요한 문맥을 가변적인 크기로 사용하는 가변길이 윈도우 방식을 제안한다. 세종코퍼스의 형태의미분석 말뭉치로 학습하여 12단어 32,735문장에 대해 실험한 결과 용언의 경우 평균 정확도 92.2%로 윈도우를 고정적으로 사용한 경우에 비해 향상된 결과를 보였다.

  • PDF