• 제목/요약/키워드: 의미역

검색결과 954건 처리시간 0.023초

CRFs 기반의 한국어 의미역 결정 (Korean Sematic Role Labeling Using CRFs)

  • 박태호;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.11-14
    • /
    • 2015
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 구구조 정보와 의존 구조 정보 등의 다양한 자질에 대한 실험이 있었다. 논항은 구문 구조에서 얻을 수 있는 서술어와 논항 관계에 많은 영향을 받지만 구문 구조가 변경되어도 변하지 않는 논항의 의미로 인해 의미역 결정에 어려운 점이 있다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank 말뭉치와 직접 구축한 의미역 말뭉치를 학습 말뭉치로 사용하였다. 본 논문에서는 이전에 연구된 구문 정보와 그 외의 자질들에 대한 성능을 검증하였다. 본 논문에서 제시하는 자질들의 성능을 검증하기 위해 CRF를 사용하였고, 제시된 새로운 자질을 사용하여 논항의 인식 및 분류에서 76.25%(F1)의 성능을 보였다.

  • PDF

KRBERT 임베딩 층에 따른 의미역 결정 (Layerwise Semantic Role Labeling in KRBERT)

  • 서혜진;박명관;김유희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.617-621
    • /
    • 2021
  • 의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.

  • PDF

뉴럴 전이 기반 한국어 의존 파싱 & 의미역 결정 통합 모델 (Neural transition-based joint models for dependency Parsing and semantic role labeling of Korean)

  • 민진우;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.343-346
    • /
    • 2018
  • 기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.

  • PDF

ExoBrain을 위한 한국어 의미역 가이드라인 및 말뭉치 구축 (Korean Proposition Bank Guidelines for ExoBrain)

  • 임수종;권민정;김준수;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.250-254
    • /
    • 2015
  • 본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.

  • PDF

한국어 서술어와 논항들 사이의 의미역 (Korean Semantic Role of subcategorization)

  • 김윤정;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.143-148
    • /
    • 2014
  • 본 논문은 한국어 문장의 서술어와 공기관계에 있는 논항들의 의미관계를 결정하는 데에 목적이 있다. 본 논문에서는 의미역을 결정하기 위해 기존에 구축된 세종구구조말뭉치를 모단위로 하여 표준국어대사전의 문형을 적용하였다. 또한 의미역을 결정하기 위해 기존 언어학 이론에서의 의미역을 정리하여 광범위한 의미역 판별기준을 세우고 이를 실제 말뭉치에 적용함으로써 자연언어적 처리가 가능하도록 정리하였다.

  • PDF

한국어 격틀 사전과 용언의 하위 범주 정보를 사용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Case Frame and Subcategory of Predicate)

  • 김완수;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-201
    • /
    • 2015
  • 의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 본 논문에서는 UPropBank 격틀 사전과 UWordMap의 용언의 하위 범주 정보를 이용하여 의미역을 부착하였다. 실험 결과 80.125%의 정확률로 의미역을 부착하는 성능을 보였다.

  • PDF

순환 신경망 병렬화를 사용한 의존 구문 분석 및 의미역 결정 통합 모델 (Joint Model for Dependency Parser and Semantic Role Labeling using Recurrent Neural Network Parallelism)

  • 박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.276-279
    • /
    • 2019
  • 의존 구문 분석은 문장을 구성하는 성분들 간의 의존 관계를 분석하고 문장의 구조적 정보를 얻기 위한 기술이다. 의미역 결정은 문장에서 서술어에 해당하는 어절을 찾고 해당 서술어의 논항들을 찾는 자연어 처리의 한 분야이다. 두 기술은 서로 밀접한 상관관계가 존재하며 기존 연구들은 이 상관관계를 이용하기 위해 의존 구문 분석의 결과를 의미역 결정의 자질로써 사용한다. 그러나 이런 방법은 의미역 결정 모델의 오류가 의존 구문 분석에 역전파 되지 않으므로 두 기술의 상관관계를 효과적으로 사용한다고 보기 어렵다. 본 논문은 포인터 네트워크 기반의 의존 구문 분석 모델과 병렬화 순환 신경망 기반의 의미역 결정 모델을 멀티 태스크 방식으로 학습시키는 통합 모델을 제안한다. 제안 모델은 의존 구문 분석 및 의미역 결정 말뭉치인 UProbBank를 실험에 사용하여 의존 구문 분석에서 UAS 0.9327, 의미역 결정에서 PIC F1 0.9952, AIC F1 0.7312의 성능 보였다.

  • PDF

한국어 의미역 결정을 위한 Korean PropBank 확장 및 도메인 적응 기술 적용 (Extending Korean PropBank for Korean Semantic Role Labeling and Applying Domain Adaptation Technique)

  • 배장성;이창기
    • 인지과학
    • /
    • 제26권4호
    • /
    • pp.377-392
    • /
    • 2015
  • 한국어 의미역 결정(Semantic Role Labeling)은 주로 기계학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에 사용되는 Korean PropBank는 의미역이 부착된 용언과 용언 격틀이 PropBank에 비해 각각 1/5, 1/2 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역이 부착된 용언과 용언 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 대부분의 의미역 결정 시스템은 학습 도메인에 의존적이기 때문에 적용 도메인 변경에 따른 성능 하락이 나타날 수 있다. 본 논문에서는 기존의 학습 말뭉치와 적은 양의 새로운 학습 말뭉치를 활용하여 새로운 도메인에 대해 의미역 결정 시스템의 성능 하락을 최소화 할 수 있는 도메인 적응 기술을 Structural SVM(S-SVM)과 Deep Neural Network(DNN) 기반 한국어 의미역 결정 시스템에 적용하여 그 실효성을 알아보고자 한다.

의미역 태깅의 제문제 (Consideration of Semantic Role Tagging)

  • 김윤정;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-80
    • /
    • 2015
  • 본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.

  • PDF

계층형 문장 구조 인코더를 이용한 한국어 의미역 결정 (Hierarchical Learning for Semantic Role Labeling with Syntax Information)

  • 김봉수;김정욱;황태선;이새벽
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.199-202
    • /
    • 2021
  • 의미역 결정은 입력된 문장 내 어절간의 의미 관계를 예측하기 위한 자연어처리 태스크이며, 핵심 서술어에 따라 상이한 의미역 집합들이 존재한다. 기존의 연구는 문장 내의 서술어의 개수만큼 입력 문장을 확장해 순차 태깅 문제로 접근한다. 본 연구에서는 확장된 입력 문장에 대해 구문 분석을 수행 후 추출된 문장 구조 정보를 의미역 결정 모델의 자질로 사용한다. 이를 위해 기존에 학습된 구문 분석 모델의 파라미터를 전이하여 논항의 위치를 예측한 후 파이프라인을 통해 의미역 결정 모델을 학습시킨다. ALBERT 사전학습 모델을 통해 입력 토큰의 표현을 얻은 후, 논항의 위치에 대응되는 표현을 따로 추상화하기 위한 계층형 트랜스포머 인코더 레이어 구조를 추가했다. 실험결과 Korean Propbank 데이터에 대해 F1 85.59의 성능을 보였다.

  • PDF