• Title/Summary/Keyword: 의미기반 이미지검색

Search Result 110, Processing Time 0.028 seconds

Semantic Image Annotation using Inference in Mobile Environments (모바일 환경에서 추론을 이용한 의미 기반 이미지 어노테이션 시스템 설계 및 구현)

  • Seo, Kwang-won;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.999-1000
    • /
    • 2017
  • 본 논문에서는 이전의 의미 기반 이미지 어노테이션 및 검색 시스템 Moment(Mobile Semantic Image Annotation and Retrieval System)에 RDF(Resource Description Framework) 추론 기능을 사용한 어노테이션 방법을 제안한다. 이를 위하여 제안된 시스템은 Apache Jena Inference API를 통해 구현되였으며 각 이미지들이 가진 어노테이션의 개수가 증가되었다. 자동으로 추론된 결과 또한 SPARQL 질의를 통해 검색이 가능하며, 기존 어노테이션 결과에 대한 의미 검색을 더욱 효과적으로 할 수 있게 한다.

A Categorization Scheme of Tag-based Folksonomy Images for Efficient Image Retrieval (효과적인 이미지 검색을 위한 태그 기반의 폭소노미 이미지 카테고리화 기법)

  • Ha, Eunji;Kim, Yongsung;Hwang, Eenjun
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.6
    • /
    • pp.290-295
    • /
    • 2016
  • Recently, folksonomy-based image-sharing sites where users cooperatively make and utilize tags of image annotation have been gaining popularity. Typically, these sites retrieve images for a user request using simple text-based matching and display retrieved images in the form of photo stream. However, these tags are personal and subjective and images are not categorized, which results in poor retrieval accuracy and low user satisfaction. In this paper, we propose a categorization scheme for folksonomy images which can improve the retrieval accuracy in the tag-based image retrieval systems. Consequently, images are classified by the semantic similarity using text-information and image-information generated on the folksonomy. To evaluate the performance of our proposed scheme, we collect folksonomy images and categorize them using text features and image features. And then, we compare its retrieval accuracy with that of existing systems.

An Efficient Technique for Image Tag Ranking using Semantic Relationship between Tags (태그간 의미관계를 이용한 효율적인 이미지 태그 랭킹 기법)

  • Hong, Hyun-Ki;Heu, Jee-Uk;Jeong, Jin-Woo;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.31-36
    • /
    • 2010
  • 최근 대두되고 있는 웹2.0의 특징은 일반 사용자들이 능동적으로 정보를 생산해내고 공유하는데 있다. 웹 2.0의 참여형 아키텍쳐를 구성하는 핵심요소로 인식되고 있는 폭소노미(Folksonomy)는 과거 택소노미(Taxonomy)와 같이 전문가에 의하여 구축되는 분류 체계가 아닌 사용자들이 협동적으로 태그(Tag)들을 만들고 관리하는 소셜 태깅(Social Tagging)에 의한 분류 시스템이다. 최근 이러한 폭소노미를 활용하여 이미지를 공유하고 검색하고자 하는 다양한 시도들이 진행되고 있다. 그러나 Flickr와 같은 태그 기반 이미지 공유 시스템에서는 태그의 문법적, 의미적 모호성과 이미지에 대한 태그들의 중요성 또는 상관관계를 고려하지 않아 태그 기반 검색 시 정확성 및 신뢰성을 보장할 수 없다. 이러한 문제를 해결하기 위해 폭소노미에 기반한 이미지 공유 데이터베이스에서 적합한 태그들을 태그 전달(Tag Propagation)하거나 확률 및 출현빈도에 기반하여 태그 랭킹을 수행하기 위한 연구들이 활발히 진행되고 있지만 여전히 만족할만한 성능을 보이지 못하고 있다. 본 논문에서는 이미지 공유 데이터베이스에서 유사한 이미지들로부터 이미지에 보다 적합한 태그들을 부여하기 위해서, WordNet을 활용하여 태그들 간의 의미관계에 기반한 효율적인 태그 랭킹 기법을 제안한다. 또한, 신뢰성 있는 태그 기반 검색을 위하여 제안한 태그 랭킹 기법이 현재 이미지 공유 시스템의 랭킹 결과보다 정확성을 높일 수 있음을 실험 예제를 통하여 확인하였다.

  • PDF

Design and Implementation of a COncept-based Image Retrieval System: COIRS (개념 기반 이미지 정보 검색 시스템 COIRS의 설계 및 구현)

  • Yang, Hyung-Jeong;Kim, Ho-Young;Yang, Jae-Dong;Hur, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3025-3035
    • /
    • 1998
  • In this paper, we describe the design and implementationof COIRS COncept,based Image Retricval System). It differs from extant content-based image retrieval systems in that it enables users to query based on concepts- it allows users to get images concepmally relevant. A concept is basically an aggregation of promitive objects in an image. For such a cencept based image retrieval functionality. COIRS aglopts an image descriptor called triple and includes a triple thesaurus used for capturing concepts. There are four facilities in COIRS: a visual image indeses a triple thesaurus, an inverted fiel, and a user query interface. The visnal image indeser facilitates object laeling and the percification of positionof objects. It is an assistant tool designed to minimize manual work when indexing images. The thesarrus captires the concepts by analyzing triples, thereby extracting image semantics. The triples are then for formalating queries as well as indexing images. The user query interiare enables users to formulate...

  • PDF

Web Image Retrieval using Prior Tags based on WordNet Semantic Information (워드넷 의미정보로 선별된 우선 태그와 이를 이용한 웹 이미지의 검색)

  • Kweon, Dae-Hyeon;Hong, Jun-Hyeok;Cho, Soo-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.1032-1042
    • /
    • 2009
  • This research is for early extraction and utilization of semantic information from the tags in tagged Web image retrieval. Generally, users attach a tag to a Web image with little thought of the order, up to over 100 ones. In this paper, we suggest a method of selecting prior tags based on their importance when tagged images are uploaded, and using them in image retrieval. Ideas came from the recognition of the important tags which give a better description of the image as the tags sharing more semantic information with other tags of the same image. This method includes calculation of relation scores between tags based on WordNet and multilevel search of tagged images with the scores. For evaluation, we compared the suggested method and other retrieval methods searching images with simple matching of tags to a given keyword. As the results, we found the superiority of our method in precision and recall rate.

  • PDF

Flickr Image Classification using SIFT Algorism (SIFT 알고리즘을 이용한 플리커 이미지 자동분류)

  • Jang, Hyun-Woong;Cho, Soo-Sun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1394-1396
    • /
    • 2013
  • 플리커와 같은 대용량 영상저장 및 공유 사이트가 인기를 끌면서 이미지 정보의 양은 점점 늘어나고 있고 사용자들은 정확한 이미지 정보 검색을 요구하고 있다. 태그기반의 이미지 검색에서 정확도를 높이기 위하여 태그들의 의미적 연관성을 이용하는 등 다양한 연구가 진행되고 있다. 본 논문에서는 특징점 추출에 기반하여 이미지를 분류하는데 뛰어난 성능을 가진 SIFT알고리즘을 사용하여 플리커 이미지를 분류하는 방법을 제안한다. 위키피디아 의미 연관성을 이용해 태그 정보로 1차 분류된 데이터베이스에 SIFT알고리즘을 사용해본 결과 기존의 SURF를 사용한 연구보다 높은 정확성을 보이는 것을 확인하였다. 따라서 이 방법을 통하여 다양한 이미지를 더욱 정확하게 분류할 수 있을 것으로 기대한다.

Color Histogram Mechanism for Video Data (비디오 데이터를 위한 색상 히스토그램 기술)

  • Lee, Jong-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.299-301
    • /
    • 2010
  • 본 논문에서는 사용자의 키워드 학습과 비교 영역 학습을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화된 비디오 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 색상 히스토그램 비교기법과 제안하는 비교 영역 학습 기법을 통해 가장 유사한 키 프레임을 검색한다.

  • PDF

Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap (시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색)

  • Lee, Seung;Jung, Hye-Wuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.11
    • /
    • pp.1133-1144
    • /
    • 2019
  • Recently, the amount of image on the Internet has rapidly increased, due to the advancement of smart devices and various approaches to effective image retrieval have been researched under these situation. Existing image retrieval methods simply detect the objects in a image and carry out image retrieval based on the label of each object. Therefore, the semantic gap occurs between the image desired by a user and the image obtained from the retrieval result. To reduce the semantic gap in image retrievals, we connect the module for multiple objects classification based on deep learning with the module for human behavior classification. And we combine the connected modules with a behavior ontology. That is to say, we propose an image retrieval system considering the relationship between objects by using the combination of deep learning and behavior ontology. We analyzed the experiment results using walking and running data to take into account dynamic behaviors in images. The proposed method can be extended to the study of automatic annotation generation of images that can improve the accuracy of image retrieval results.

COSMIC : Design and Implementation of a Content-Based Multimedia Retrieval System using Domain Knowledge and Visual Information (COSMIC : 영역지식과 시각정보를 이용한 내용기반 멀티미디어 검색 시스템의 설계 및 구현)

  • Kim, Deok-Hwan;Kim, Si-U;Park, Gwang-Sun;Lee, Byeong-Gu;Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.1
    • /
    • pp.14-28
    • /
    • 1999
  • 최근 멀티미디어 데이터로부터 내용에 대한 정보를 추출하여 데이터베이스에 저장하고 내용에 기반한 질의를 수행하도록 하는 내용 기반 검색 시스템이 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용 기반 멀티미디어 검색 시스템인 COSMIC(Content Based Multimedia Information Processor)의 설계 및 구현에 관하여 기술한다. COSMIC은 대용량 이미지 데이터로부터 자동으로 추출된 시각적 특징 데이터들을 다차원 점접근 방법(Point Access Method)인 HG-트리를 이용하여 색인하고 예제 이미지와 사용자가 그린 스케치에 의한 시각적 질의를 제공한다. 또한 COSMIC은 비디오 데이터로부터 추출된 다양한 의미 정보를 이용하여 의미 질의를 제공한다. COSMIC의 유효성을 입증하기 위해서 다양한 시각적 질의와 이미 질의를 이용한 실험을 수행하였다.

Development of A Video Information Management System for Supporting Caption and Content-based Searches (주석 및 내용 기반 검색을 지원하는 동영상 정보 관리 시스템의 개발)

  • 전미경;허진용;김인홍;강현석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.284-289
    • /
    • 1998
  • 본 논문에서는 동영상 정보의 효율적인 관리를 위해 주석 기반 검색과 내용 기반 검색을 통합적으로 지원하는 통합 동영상 데이터 모델(Integrated Video Data Model, IVDM)를 제안한다. IVDM은 동영상 자료를 계층적으로 구조화하여 상위 수준에서는 의미 단위와 세그먼트 단위로 주석 기반 검색을 지원하고, 하위 수준에서는 이미지 인덱싱을 이용한 내용 기반 검색을 지원한다. 우리는 이 IVDM을 이용하여 MPEG-2로 압축된 동영상 정보를 관리하는 시스템(Integrated Video Information Management System, IVIMS)을 개발한다.

  • PDF