• Title/Summary/Keyword: 응력 완화

Search Result 282, Processing Time 0.028 seconds

Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine Blades (터보펌프 터빈 블레이드 형상 요소의 구조적 영향)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Structural effects of several geometric parameters such as shroud thickness, edge roundness and fillet radius of turbopump turbine blade were investigated throughout transient finite element analyses. Usually shroud is inserted to increase aerodynamic efficiency, but blocks deformation of blades. Therefore it can increase stress level in a structural point of view. Likewise, edge roundness and fillet between blades are also parameters where aerodynamics and structural mechanics should compromise. In this study, overall stress levels according to the geometric parameters were thoroughly investigated and the results could be utilized to determine optimal geometries.

Dynamic Properties of Starch and Rheological Effect of Fish Protein Gel upon the Addition of Starch (전분의 동적 특성 및 전분 첨가시 생선 단백질 젤의 물성학적 특성변화)

  • Pyun, So-Hee;Kang, Byung-Sun;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.427-432
    • /
    • 1997
  • 감자전분의 수분함량에 따라 가열하는 동안 전분의 점탄성 성질의 변화를 조사한 결과 전분의 농도가 증가할수록 더 높은 storage modulus (G#)와 loss modulus (G@) 값을 보여주었으며, 호화개시온도 및 호화최대값을 나타내는 온도는 전분농도에 따라 낮은 온도로의 이전을 보여주었다. 20%의 감자전분과 옥수수전분을 비교한 결과, 옥수수전분은 $68^{\circ}C$, 감자전분은 $60^{\circ}C$에서의 호화개시온도를 나타내었으나, G#와 G@값은 옥수수전분이 높게 나타났고 이와 같이 서로 다른 호화개시온도, 호화정도 및 그 최대값을 나타내는 온도변화는 아밀로즈/아밀로팩틴의 함량과 전분 입자의 크기에 따른 것으로 여겨진다. 감자와 옥수수 전분을 각각 3%씩 첨가하여 만든 생선단백질 젤의 파손강도를 측정한 결과 전분들을 첨가한 단백질 젤이 무첨가한 젤보다 더 강하게 나타났으며, 옥수수 전분의 첨가가 감자전분 첨가보다 더 강한 젤의 강도를 나타내었다 혼합비를 달리 첨가하여 만든 겔을 응력완화현상을 측정한 결과 감자 및 옥수수 전분을 첨가한 경우는 초기순간응력, 평형응력 뿐만 아니라 전체적인 응력의 증가현상이 일어났으나 3요소 일반화된 Maxwell 모형으로 분석한 결과는 감자 전분과 옥수수전분에 의한 탄성을 (elastic modulus) 상승효과는 첨가농도의 의존성을 보여 주었다.

  • PDF

Sintering of Layer Structure Materials: Effect of Starting Material on Sintering Defects and Residual Stress (층상구조 재료의 소결: 출발물질이 소결결함 및 잔류응력에 미치는 영향)

  • 정연길
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • To analyze several defects and residual stress in sintering of layer structure materials, multiayer materials with TZP/SUS and ZT/SUS, and bilayer materials with porcelain/alumina and porcelain/Y-TZP were fabricated by sintering method. Multilayer materials prepared by pressureless sintering show the sintering defect such as warping, splitting, cracking originated from the difference of sintering shrinkage between each layer, which could be controlled by the adjustment of number and thickness in interlayer. In tape casting, a certain pressure given during sintering relaxed the sintering defects, specially warping. The residual stress in bilayer was examined with Vickers indentation method. A small tensile stress in porcelain/alumina and a large compressive stress in porcelain/Y-TZP were generated on the porcelain interface due to the thermal expansion mismatch, which affected the strength of bilayer materials. As a consequence, the sintering defects of multilayer materials and the residual stresses of bilayer materials were dominantly influenced on material design and starting material constants.

  • PDF

Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement (8절점 Hybrid/Mixed 평면응력요소)

  • Chun, Kyoung Sik;Park, Won Tae;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.319-326
    • /
    • 2006
  • A new enhanced 8-node hybrid/mixed plane stress elements based on assumed stress fields and modifed shape functions has been presented. The assumed stress fields are derived from the non-conforming displacement modes, which are less sensitive to geometric distortion. Explicit expression of shape functions is modifed so that it can represent any quadratic fields in Cartesian coordinates under the same condition as 9-node isoparametric element. The newly developed element has been designated as 'HQ8-$14{\beta}$'. The presented element is compared with existing elements to establish its accuracy and efficiency. Over a wide range of mesh distortions, the element presented here is found to be exceptionally accurate in predicting displacements.

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

Influence of the Biodegradable Packaging Material on the Rheological Properties of Eggs (생분해성 포장재질이 달걀의 물성에 미치는 영향 연구)

  • Kim, Ji-Hyun;Park, Jong-Shin;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.525-530
    • /
    • 1997
  • The changes in rheological properties of egg white stored in biodegradable package were investigated by pH change, failure stress and stress relaxation curve, and compared with control without package and complex PE. Initial pH of egg white stored in biodegradable package changed from 8.39 to 9.3 after 8 day storage, showing similar trend in pH change as that of control without package. Initial 14.25 N failure stress was changed into 6.76 N in biodegradable package and 9.31 N in control. Complex PE, having a relatively low gas permeability compared to biodegradable package, showed less pH changes from 8.30 to 8.81, but a greater decrease in failure stress into 5.29 N, indicating more deteriorating effect in complex PE package. Viscoelastic constants, such as elastic constant and viscous constant, obtained from stress-relaxation curve by three element Maxwell model were not significantly different between control and biodegradable package, but eggs stored in complex PE showed greater changes during storage. Therefore, the permeability seems to be the major factors to influence the rheological properties of egg and biodegradable packaging materials showed a potential substitute package for eggs.

  • PDF

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

Evaluation on Applicability of Stress Relief Hole for Improvement of Fatigue Stress Capacity of Steel Structural Details (강구조상세부의 피로저항능력 개선을 위한 응력완화홀 적용성 평가)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Kim, Kyoung Nam;Yang, Keon Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.451-461
    • /
    • 2013
  • In steel bridges, there are several details that constrain the deformation such as buckling by external forces. Most of these details which are composed of the intersection members have scallops in order to exclude the weld defects inherently and to get the ease of fabrication and also to decrease the stress concentration. In this study, stress relief hole (SRH) near stress concentration zone with detail category D or under is proposed as a method to improve the resistance on the fatigue crack initiation to detail category C. And the effects of the appropriate size and location of SRH were examined and the applicability to improve the fatigue resistance of the floorbeam web and the rib wall at rib/floorbeam intersection in the orthotropic steel deck bridge was evaluated.

Behavior of Composite Structure by Nonlinearity of Steel-concrete Interface(II) -Behavior of Steel-Concrete Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동 (II) -강·콘크리트 경계면의 거동 특성-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.509-518
    • /
    • 2003
  • In this study, we carried out nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed interface behavior such as distribution of tangential traction and relative slip in steel-concrete composite structure. As a result of this study, tangential traction and relative slip of interface is rapidly increased at the steel plate-concrete interface, especially at the neutral region, rather than tensile, as opposed to the T beam-concrete interface. In transverse direction, it has gradually reduced to go outside from loading position. In longitudinal direction, it was minimum at the central region near the loading point, maximum at 0.6-0.7L from support and gradually reduced as it nears support. Moreover, as the load is increased, the failure of interface gradually expands from the maximum tangential traction position to the entire region. It is expected to provide fundamentality for interface behavior and load-carrying mechanism, and for the design of bending and shear connection of steel-concrete composite structure.

Evaluation of Internal Stress and Dislocation Velocity in Creep with Austenite Stainless Steels (오스테나이트계 스테인리스강의 크리프 변형중 내부응력과 운동전위밀도의 평가)

  • Kim Hyun Soo;Nam Ki Woo;Park In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.214-219
    • /
    • 2005
  • To investigate the change of internal stress and mobile dislocation density in the creep, stress relaxation test was examined from each strain range. Mobile dislocation density increased until it reached minimum creep rate but after that, it decreased. Internal stress did not change until it reached minimum creep rate but after that, it decreased. The stress relaxation rate is fast and approached zero later 1.5 seconds, which were begun in the stress relaxation. When the applied stress is large, the internal stress is large. It is cleared that dislocations glide viscously which N passes by cutting Cr atom rather than typical viscosity movement by the evaluation of mobility of dislocation in STS310J1TB.